KEY ASSEMBLING ISSUES RELATING TO MECHANICAL VIBRATION OF FABRICATED ROTOR OF LARGE INDUCTION MACHINES

In many applications, where rotating machines of high power are used, high demands on reliability and safety are laid. Precise manufacturing procedures have to be kept even in case of machines retrofits when e.g. rotors are newly assembled. Even small inaccuracies or misleading the precise technological procedure can lead to improper running of the machine and it can result in shut-down of complete drive. In case of primary circuits of nuclear power plants, it further means the shut-down of the whole power plant. Consequently, it results in significant financial losses (foregone profit and cost given by problem fixing). The paper presents a methodology of vibration origin investigation in case of large rotating machines which are part of drives like pump, compressors etc. The methodology is based on the detection of undesirable vibration using a diagnostic system on-site and further it uses mathematical modelling of corresponding mechanical parts to reveal the vibration origin. The modelling along with the measurement showed that the detected dangerous vibration is caused by misguided assembling of the rotor of the machine.

Keywords: induction, machine, rotor, vibration, unbalance, assembling

1. Introduction

Not only the industry but the whole today’s society is virtually dependent on a continuous supply of electric energy. With the electricity our work is easier which increases the comfort of our lives and gives us a sense of safety. A smooth operation of power plant is therefore very important aspect for a successful and continuous development of our civilization.

Key function elements of conventional thermal, nuclear, and hydroelectric power plants are rotating electrical machines. Besides the power generator the power plant utilizes a large amount of supporting drives (conveyors, pushers, ...) and auxiliary systems (mills, pumps, ...), which together form a huge functional unit. Even a brief function drop-out of any auxiliary system may lead to incidental power plant downtime and thus the power outage.

The power plant operation puts very high operational demands on machines, especially in terms of wide range of dynamic loads. Therefore, it is very important to regularly monitor the vibration of the machines and perform any maintenance earlier than necessary and as planned. This is particularly relevant to large power machines whose rotors have a complicated structure.

One of the major properties of electric machine rotors is their mechanical stiffness [1-6]. Rotors must resist mechanical stress, which primarily comprises centrifugal forces, rotor vibrations, thermal dilatation and the interference press fit [7-12]. In addition to tangential forces producing the machine torque, rotors are also affected by electromagnetic forces in a radial direction [13-18]. These forces gain much higher amplitudes, but they are mutually cancelled [19-21] due to the symmetric mounting of the rotor. If this symmetry is destroyed, for instance, as a result of faulty balancing of the rotor or its eccentric mounting, a unilateral magnetic force occurs [22].

In motors of small dimensions, whose diameter hardly exceeds one meter, the rotor magnetic circuits can be punched from a single sheet. In such a case, the issue of clamping forces can be ignored [23-25]. With a segment layout of rotor laminations, the sufficient clamping force must be achieved by a design with a proper number of clamping bolts, their proper diameter and position taking into account the magnetic flux and saturation of the magnetic circuit.

Rotors of large diameters constitute a different situation. In this case, the number, size and location of the holes for clamping bolts are not critical. The size of the magnetic yoke makes the design trouble-free. The major problem, however, is the size of the mass rotating along the large diameter of the rotor. This leads to substantial centrifugal forces and to the necessity of large friction forces between the individual lamination segments. The necessary friction force is achieved by a large clamping pressure. The maximum value of the clamping force is predominantly limited by the stiffness in the area of ventilation ducts. If the clamping force is insufficient, the segments are loosened, which leads to an imbalance of the rotor. A small clamping force results in loosened ventilation sheets and their shift to the ventilation gap.

The aim of the article is to present a methodology of determining the source of vibration of large machines. The methodology is based on on-site vibration measurement and on analysis of related phenomena like rotor-stator dynamics, analysis of material stress and clamping force of the rotor packet. Other works relating to rotor vibration can be followed in [25-37].

In many applications, only the vibration measurement, which is usually part of a diagnostic system, is presented.
The diagnostics can only determine whether the vibration is acceptable or not, since the methodology presented here goes behind and tries to propose a particular procedure for the vibration origin determination.

2. Rotor packet assembling design

A rotor stack is assembled by stacking up steel laminations (see Figure 1). In a steady-state, a magnetic flux with a slip frequency (fractions of Hz up to several Hz) passes through the rotor. However, during the rotor run-up or during a more significant load, the frequency is large and the iron core losses are higher. Therefore, a laminated structure of rotors is necessary.

A rotor stack with a diameter larger than one meter is assembled by stacking up annular segmented steel ring. All odd lamination layers are stacked to even lamination layers with a half overlap (see Figure 2). During assembling, the segments are put on the clamping bolts through the punched-out holes.

Rotor stack is constructed with diameter smaller than the diameter of the rotor spider. Then it is mounted on the rotor spider with an overlap achieved by heating up the lamination, or this method can be combined with super-cooling of the rotor spider with liquid nitrogen. This gives rise to significant radial force acting on the rotor even if it is stopped.

Figure 2 clearly shows that every even layer of lamination is forced to gape in the direction from the radial wedges on the spider arms. This is a serious design error which increases the peripheral stress of the lamination ring by the \(F_r \) force. The size of the segments is influenced by many factors [22]. The technological clearance between the sheets in one layer within the contact plane is usually around 0.5 mm. After compression with the relevant pressure, the rotor stack is clamped with clamping rings and bolts. The bolts must exert a sufficient clamping force, thus creating a pre-stressed bolted joint.

Apart from mechanical forces, other forces are also acting in the rotor, namely electromagnetic forces, dynamic forces and forces caused by thermal dilatation [22-24].

3. Requirements for bolts tightening torque

Loosening of a lamination segment is prevented by the friction force between the sheets which is exerted by the clamping pressure. This pressure is created by continuous pressure on the lamination stack as early as during the rotor manufacture. In order to prevent a drop in this pressure as a result of vibrations during the motor operation, the entire rotor pack is clamped with bolts, thus creating a pre-stressed bolted joint. The nuts on the bolts must be tightened with a relevant tightening torque and secured with a weld to prevent loosening.
the effects of field of centrifugal forces cannot be neglected. Moreover, it is a significant source of mechanical loads. The magnitude of clamping force has to take into account the way how the stack segments are fixed to each other.

4.1 First insight calculation

Let us assume, the rotor rotates with an operational speed \(\omega \). Further let us suppose a ring with radius \(r \) and height \(h \) (see Figure 3). Let us consider an infinitesimal small element of mass \(dm \) which corresponds with an angular sector which is given by angle \(da \). The magnitude of the centrifugal force acting on the assumed element can be then expressed in following form

\[
dF = \omega^2 (r + \frac{h}{2}) dm = \omega^2 r^2 \rho h d\alpha.
\] (1)

The effect of centrifugal force has to be balanced by inner circumferential tensile forces \(F_\alpha \) and \(F_\beta \), which are of the same size. As for the size of the elementary force \(dF_\alpha \), the following must hold

\[
dF_\alpha = F_\alpha d\alpha.
\] (2)

Comparing Equations (1) and (2), one can arrive to the expression of the inner tensile force

\[
F_\alpha = \frac{F}{bh}.
\] (3)

which causes inner tensile stress

\[
\sigma = \frac{F}{bh} = \omega^2 r^2 \rho.
\] (4)

The centrifugal forces will cause the circumference of the revolving ring to increase. In order to calculate the relative lengthening, the Hook Law can be used, in which the following holds

\[
\varepsilon = \frac{2\pi (r + \Delta r) - 2\pi r}{2\pi r} = \frac{\Delta r}{r} = \frac{\sigma}{E} = \frac{\omega^2 \rho}{E} r^2
\] (5)

The increase in the radius of the rotating ring is expressed after rearrangements as follows
KEY ASSEMBLING ISSUES RELATING TO MECHANICAL VIBRATION OF FABRICATED ROTOR...

VOLUME 21 COMMUNICATIONS 2/2019

\[\sigma_r = -\frac{\omega^2 \rho r^3}{E}. \] (6)

This increase of the radius results in the decrease of the interference fit and the decrease in the clamping force across the spider arms.

4.2 Calculation using stress analysis

Further, the rotating rotor packet can be considered as a rotating ring loaded by centrifugal force \(F \), which causes following two principal stresses

\[\sigma_r (r) = D_1 - \frac{D_2}{r^2} - \left(1 + 3\nu\right) \frac{\rho \omega^2}{8} r^2. \] (7)

where \(\sigma_r (r) \) stands for radial stress and \(\sigma_r (r) \) for tensile stress in the ring. These two quantities are dependent on the radial position \(r \) [37]. Considering the nominal speed of the investigated machine, the particular values of the stresses (see Table 1) are presented in Figure 4 along with the ring view. To determine the stresses, an infinitesimal element of the ring is used to formulate a general stress equilibrium. Details can be found in [37].

The manufacturer used an approach for clamping force determination which led to values presented in Table 2. The quantities seem to have inadequate values. They are insufficient to guarantee to compactness of the rotor during its operation.

Table 1 Tensile force

<table>
<thead>
<tr>
<th>Calculation approach</th>
<th>Tensile force [MN]</th>
<th>Tensile stress [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>First inside approach</td>
<td>16.08</td>
<td>47</td>
</tr>
<tr>
<td>Using stress analysis</td>
<td>12.94 (integral value)</td>
<td>depends on the radial position</td>
</tr>
<tr>
<td>Data given by manufacturer</td>
<td>17.49</td>
<td>5.33</td>
</tr>
</tbody>
</table>

\[\Delta r = \frac{\omega^2 \rho r^3}{E}. \] (6)

\[\sigma_r (r) = D_1 - \frac{D_2}{r^2} - \left(1 + 3\nu\right) \frac{\rho \omega^2}{8} r^2. \] (8)
there is almost none clamping force, a radial shift of laminations and a plastic distortion around the bolt occur. Figure 7 clearly shows that in the critical areas, the stress exceeds the value yield strength.

7. Eccentricity due to rotor packet segment sliding

Based on the finding presented above, the mechanism of eccentricity is caused by rotor segment sliding due to insufficient rotor packet clamping. As presented in Figure 8, there are two possibilities of the segment releasing: the first comprises two segment releasing (Figure 8 left), the second lies in releasing of three segment (Figure 8 right). These two mechanisms are coupled and arise mutually.

The resulting value of imbalance of the rotor packet was determined based on the estimate of the shift of the segments. The shift is supposed to be 1mm radially into the ventilation gap of the machine.

8. Vibration source detection in a circulating pump drive

The objective was to design the model of the machine in such a way that it could be used to determine the size of vibrations. Here the source of vibrations is the loosening of several segments and their radial shift leading to an imbalance. This imbalance is further affected by a unilateral magnetic pull which causes a further increase in vibrations. The model must be able to simulate an arbitrary imbalance in any spot of the rotor (see Figure 3). The model takes into account the basic properties of a stator as well.
account. The pack is divided into a suitable number (namely 6) of stiff discs, among which the torsional and bending stiffnesses are considered. The discs are mounted at the corresponding discretization nodes of the rotor.

The mathematical model of the rotor was further supplemented with the model of the stator so that it was possible to simulate the vibration of the stator as a result of the imbalance on the rotor [23-31]. Similarly, with respect to the rotor model, the mathematical model of the stator can generally be expressed in the matrix form

$$ M_S q_S + (\omega G_S + B_S) q_S + (C_S + K_S) q_S = f_S(t), \quad (13) $$

where the matrix M_S represents the mass matrix, ωG_S represents the gyroscopic effect matrix, B_S the damping matrix, C_S the circulation matrix and K_S the rotor stiffness matrix. The vector q_S corresponds to the vector of generalized coordinates defining the configuration space in which the mathematical model is created. As the stator is considered to be a rigid body fixed to the frame flexibly, the vector q_S corresponds to the vector of generalized coordinates defining the configuration space in which the mathematical model is created. The vector $f_S(t)$ defines the external load of the rotor. The matrices listed above are obtained through the finite element method. The shaft is considered to be a one-dimensional continuum if the Euler-Bernoulli theory is adopted assuming that the cross-section area of the shaft is not distorted and remains perpendicular to the distorted axis of the shaft. This assumption can be employed in case of small distortions. Here the influence of the circulation matrix is ignored.

When modelling the rotor of an electric motor, the torsional and bending stiffness of the lamination pack is taken into account. The pack is divided into a suitable number (namely 6) of stiff discs, among which the torsional and bending stiffnesses are considered. The discs are mounted at the corresponding discretization nodes of the rotor.

The mathematical model of the rotor was further supplemented with the model of the stator so that it was possible to simulate the vibration of the stator as a result of the imbalance on the rotor [23-31]. Similarly, with respect to the rotor model, the mathematical model of the stator can generally be expressed in the matrix form

$$ M_R q_R + (\omega G_R + B_R) q_R + (C_R + K_R) q_R = f_R(t), \quad (12) $$

where the matrix M_R represents the mass matrix, ωG_R represents the gyroscopic effect matrix, B_R the damping matrix, C_R the circulation matrix and K_R the rotor stiffness matrix. The vector q_R corresponds to the vector of generalized coordinates defining the configuration space in which the mathematical model is created. The vector $f_R(t)$ defines the external load of the rotor. The matrices listed above are obtained through the finite element method. The shaft is considered to be a one-dimensional continuum if the Euler-Bernoulli theory is adopted assuming that the cross-section area of the shaft is not distorted and remains perpendicular to the distorted axis of the shaft. This assumption can be employed in case of small distortions. Here the influence of the circulation matrix is ignored.

8.1 Dynamical model of the drive for vibration analysis

The mathematical model of the rotor can be generally expressed in a matrix form in a non-rotating coordinate system

$$ M_R q_R + (\omega G_R + B_R) q_R + (C_R + K_R) q_R = f_R(t), \quad (12) $$

where the matrix M_R represents the mass matrix, ωG_R represents the gyroscopic effect matrix, B_R the damping matrix, C_R the circulation matrix and K_R the rotor stiffness matrix. The vector q_R corresponds to the vector of generalized coordinates defining the configuration space in which the mathematical model is created. The vector $f_R(t)$ defines the external load of the rotor. The matrices listed above are obtained through the finite element method. The shaft is considered to be a one-dimensional continuum if the Euler-Bernoulli theory is adopted assuming that the cross-section area of the shaft is not distorted and remains perpendicular to the distorted axis of the shaft. This assumption can be employed in case of small distortions. Here the influence of the circulation matrix is ignored.

When modelling the rotor of an electric motor, the torsional and bending stiffness of the lamination pack is taken into account. The pack is divided into a suitable number (namely 6) of stiff discs, among which the torsional and bending stiffnesses are considered. The discs are mounted at the corresponding discretization nodes of the rotor.

The mathematical model of the rotor was further supplemented with the model of the stator so that it was possible to simulate the vibration of the stator as a result of the imbalance on the rotor [23-31]. Similarly, with respect to the rotor model, the mathematical model of the stator can generally be expressed in the matrix form

$$ M_S q_S + (\omega G_S + B_S) q_S + (C_S + K_S) q_S = f_S(t), \quad (13) $$

where the matrix M_S represents the mass matrix, B_S stands for the damping matrix and K_S the stator stiffness matrix. The vector q_S corresponds to the vector of generalized coordinates defining the configuration space in which the mathematical model is created. As the stator is considered to be a rigid body fixed to the frame flexibly, the vector of the generalized coordinates is $q_S = \{x, y, z, \phi_x, \phi_y, \phi_z\}^T$. Where the listed coordinates define the deflections of the stator centre of mass and its angular deflections the relevant coordinate axes. The vector $f_S(t)$ defines the external load of the rotor. The
vertical rotor position and is determined for nominal operating speed of the rotor.

8.2 Critical speeds determination

In order to analyse basic dynamical properties of the system, especially the location of the critical speeds, the Campbell diagram was determined, i.e. the dependency of the natural frequencies on the rotor speed, see Figure 4 [7, 9, 14]. The diagram shows that the intersection point of the revolution start-up line and the curve of the second natural frequency depicted is located near the operating speed. However, this situation is not dangerous from the operational point of view because the corresponding natural shape describes the system vibration in an axial direction and therefore is not dominantly excitable due to the rotor imbalance and the unilateral magnetic pull.

The computational model created was used to determine the upper effective estimations of the radial velocities at measurement points 1 and 2, as shown in Figure 10. These spots correspond to the operational measurement points. The speed of rotor is assumed to be the nominal.

8.3 Steady-state response to imbalance forces due to rotor packet sliding

The vector of excitation forces \(f(t) \) in (14) comprises the effect of centrifugal forces. The extent of the stack bulging is simulated in matrices of damping and stiffness only take into account the damping and stiffness parameters of the stator fixing.

The stator and rotor are mutually coupled by means of bearings. The rotor rests on four radial and two axial journal bearings. Figure 10 shows the position of the bearings and their designation. In order to mathematically interconnect the subsystem of the rotor with the subsystem of the stator, an overall mathematical model of the system was created in the configuration space, which is defined by the vector of generalized coordinates in the form of \(q = [q^r, q^s] \). Then the complex mathematical model has following general matrix form

\[
Mq + (B + B^s)q + (K + K^s)q = f(t).
\]

Presented matrices can be expressed as

\[
M = \begin{bmatrix} M_r & 0 \\ 0 & M_s \end{bmatrix},
B = \begin{bmatrix} \omega G_r + B^r & 0 \\ 0 & B^s \end{bmatrix},
K = \begin{bmatrix} C_r + K_r & 0 \\ 0 & K_s \end{bmatrix} f(t) = \begin{bmatrix} f_r(t) \\ f_s(t) \end{bmatrix}.
\]

Matrices \(B_r \) and \(K_r \) represent the matrices of damping and stiffness of bearing couplings. As the rotor is placed in a vertical position, the determination of the stiffness of the radial bearings is a very sophisticated problem in general. For the first approach, the stiffness of radial bearings can be estimated based on their type, their geometrical parameters and the oil viscosity according to [9]. However, this approach assumes horizontal position of the rotor and therefore the main load of the bearing is given by gravity load. Here, the main radial load is estimated based on the vertical rotor position and is determined for nominal operating speed of the rotor.

Figure 9 Diagram of the arrangement of the machine stator and rotor
8.4 Evaluation of vibration measurement and calculation

During the rotor operation, a vibration measurement was performed. The positions, where the vibration were recorded are designated in Figure 9 as measuring points 1 and 2. The

to determine what vibration level is caused by different amounts of imbalance and how it corresponds to vibration measurement.

Based on the findings on the rotor after its disassembling, the imbalance is given by the rotor bulging. The rotor was divided into 5 uniform segments and at each segment the imbalance due to bulging was simulated separately. The imbalance of one segment is given by the mass \(\Delta m_{ij} = 0.328 \text{ kg} \), which results in a centrifugal force of \(\Delta F_{ij} = 2.83 \text{ kN} \) under nominal speed. The computational cases of the position of the imbalance within the rotor is displayed in Figure 11. The cases were taken into account in a way which makes it possible to calculate the induced imbalance.

Table 3

<table>
<thead>
<tr>
<th>Calculation event</th>
<th>Upper Effective Estimation of the Velocity Amplitude in the Radial Direction [\text{mm/s}]</th>
<th>Location of the packet sliding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>point 2: (V_{\text{rad}2})</td>
<td>point 2: (V_{\text{rad}2})</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>3.1</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>5.2</td>
<td>16.2</td>
</tr>
<tr>
<td>4</td>
<td>7.7</td>
<td>22.3</td>
</tr>
<tr>
<td>5</td>
<td>10.5</td>
<td>28.7</td>
</tr>
</tbody>
</table>

![Figure 10 Campbell diagram of the rotor-stator system](image)

Figure 10 Campbell diagram of the rotor-stator system

![Figure 11 Computational cases of the position of the imbalance within the rotor](image)

Figure 11 Computational cases of the position of the imbalance within the rotor
Based on finding after rotor disassembling, the main problem consisted in the rotor mounting, especially in its clamping. It has been found, that the improper rotor clamping resulted in rotor imbalance which further gave rise to undesirable vibrations which led to that the rotor had to be put out of operation.

The created mathematical and computational model of the machine made it possible to simulate an arbitrary imbalance of the rotor. The output of the model was the intensity of vibrations of the stator. The model was verified by a practical measurement and proved to be in very good agreement. In addition, the loosened ventilation sheet was simulated and the stress acting on it was calculated. The model predicted possible plastic distortions which were subsequently confirmed by a finding obtained after the dismantling of the machine. One of the rotor stacks exhibited an inadmissible eccentricity and the relevant ventilation sheet even suffered from a plastic deformation.

The analysis proved that an insufficient clamping force can lead to put the rotor out of operation which can finally result in high secondary financial losses, e.g. if the rotor is operated primary circuit within nuclear power plants.

Acknowledgement

This research has been supported by the Ministry of Education, Youth and Sports of the Czech Republic under the RICE - New Technologies and Concepts for Smart Industrial Systems, project No. LO1607 and by funding program of the University of West Bohemia number SGS-2018-009.

References

