DESIGN AND CONSTRUCTION OF HIGH-QUALITY CAPACITOR FOR HIGH FREQUENCY AND POWER APPLICATION

Martin Zavřel¹, Vladimír Kindl¹*, Tomáš Kavalír², Pavel Drábek¹

¹Regional Innovation Centre for Electrical Engineering, Faculty of Electrical Engineering, University of West Bohemia, Pilsen, Czech Republic
²Regional Technological Institute, Faculty of Mechanical Engineering, University of West Bohemia, Pilsen, Czech Republic

*E-mail of corresponding author: vkindl@kev.zcu.cz

Resume
The paper proposes a design and construction of a special plated capacitor exhibiting very good high-frequency characteristics. The capacitor is designed to minimize the parasitic parameters like ESR (equivalent series resistance) and ESL (equivalent series inductance) and to be suitable for power industry applications. The paper describes the fabrication process and discusses technical issues related to technology of manufacturing and assembling. It also provides an experimental verification and the quality evaluation based on frequency characteristics compared to existing commercial high-quality capacitor.

1 Introduction

Increasing the power density of electrical passive components, such as a capacitor [1-3], inductor or resistor, incorporated into modern power systems, is a common technical goal for many power applications. Higher power density brings better material utilization, lower weight and lower equipment cost. Many power applications are using the high frequency and sometimes the resonance, e.g. wireless power transfer [4-5], high-pass, low-pass and EMI (electromagnetic interference) filters [6-7], induction heating [8-9] etc.

In these applications, the compensation capacitors play a very important role, since they must carry very high electrical current and are being stressed with relatively high voltage. In that case, the quality factor (Q factor) of the capacitor is one of the most important characteristics in a power circuit design [10]. Besides the capacitance (the main parameter), the practical capacitor consists of equivalent series resistance (ESR), equivalent series inductance (ESL) and insulation resistance (Rg) [11-13]. The electrodes and the terminals of a capacitor contribute the resistive component and the inductive component, while the dielectric material contributes the insulation resistance.

The ESR causes energy loss in a form of heat and the ESL parameter creates a magnetic field interfering with how the current rises to the peak and falls back. The Q factor then represents efficiency of a given capacitor in terms of its rate of energy loss. When neglecting influence of the insulation resistance (is too high), one may write:

\[
Q = \frac{\frac{I_m}{2}\cdot\frac{C}{E\cdot\text{ESR}}}{\frac{2}{f}} = \frac{1}{\omega R_C}. \tag{1}
\]

In Equation (1), \(\omega\) represents the angular frequency of the power supply, \(I_m\) is the magnitude of the current through the capacitor \(C\) and \(R\) represents its ESR. As obvious from Equation (1), the energy loss starts to dominate at higher frequencies, therefore the high Q factor capacitors must be used to prevent any performance issues. This could be achieved by special design having the ultra-low ESR and so ESL. This high-quality capacitor will find its purpose in any industrial-, electronics- or medicine application [14-17] that are using frequencies even higher than tens of MHz.

This paper proposes a design of high-quality, high-frequency and high-power capacitor and describes step-by-step manufacturing and assembling process. The capacitor properties are compared to the equivalent high-quality capacitor available on the market [18].

2 Design of the capacitor

As mentioned in previous section, to demonstrate the quality of this design, the properties of the capacitor are compared to the existing one developed by Vishay
In Equation (4), \(J \) stands for the chosen current density (10 A/mm\(^2\)), \(S_k \) represents the usable current carrying cross-section, \(T_S \) defines allowed warming, \(R_{th} \) represents the thermal conductivity for one layer, \(\rho_{Cu} \) is specific resistivity of copper, \(a \) is the electrode dimension (\(a = 130 \) mm) and \(k \) represents the safety coefficient (\(k = 0.5 \)).

The current density in Equation (4) needs to be defined regarding to the current carrying capacity (maximum current, cooling ability, etc.). The final number of layers (\(N = 5 \)) is then defined from both the requested physical dimensions (130 - 130 mm) and the overall capacitance \(C_{cap} \approx 10 \) nF. As a consequence, a large electrode thickness (200 \(\mu \)m of copper foil), usable electrode surface and five-layers connected in parallel make the current density to fulfil condition in Equation (4) up to 50 A\(_{peak}\).

2.2 Mechanical and construction design

The basic mechanical design comes out from chosen geometrical topology, i.e. number of layers, electrode dimensions, plate layer thickness, etc. As the minimization of ESR and ESL is of a great importance, the design must guarantee uniform distribution of the current density in the capacitor layers. Therefore, the physical interconnections between each layers must have the same impedance, which is moreover as small as possible. The same must be ensured within each standalone layer.

The material selected for a capacitor dielectric is high dielectric constant substrate (AD1000) that permits circuit miniaturization compared to traditional low loss materials. It is a woven ceramic fiberglass reinforced laminate for microwave printed circuit boards (PCB’s). As the material shows the perfect electrical and thermal parameters (seen in Table 1), it could be used for a wide range of applications.

The overall capacitance is determined from Equation (3) assuming nearly ideal parallel interconnection of \(N \) capacitor layers [19]:

\[
C_{cap} = \varepsilon_0 \epsilon_r \frac{S}{\varepsilon} N .
\]

Parallel connection also has beneficial impact to the current density - Equation (4) and parasitic values minimization.

\[
J S_k k \geq \sqrt{\frac{\Delta T S_k}{R_{th} \rho_{Cu} \frac{a}{4}}} .
\]

Table 1 Typical properties for AD1000

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Units</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant</td>
<td>8.5</td>
<td>---</td>
<td>@10 GHz (IPC TM-650 2.5.5.5)</td>
</tr>
<tr>
<td>Dissipation factor</td>
<td>0.0023</td>
<td>---</td>
<td>@10 GHz (IPC TM-650 2.5.5.5)</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>-380</td>
<td>ppm/°C</td>
<td>@10 GHz (IPC TM-650 2.5.5.5)</td>
</tr>
<tr>
<td>Volume resistivity</td>
<td>1.4 \times 10^6</td>
<td>M(\Omega)cm</td>
<td>C96/05/90</td>
</tr>
<tr>
<td>Surface resistivity</td>
<td>1.8 \times 10^6</td>
<td>M(\Omega)</td>
<td>C96/05/90</td>
</tr>
<tr>
<td>Electrical strength</td>
<td>245</td>
<td>kV/mm</td>
<td>IPC TM-650 2.5.5.5</td>
</tr>
<tr>
<td>Dielectric breakdown</td>
<td>> 45</td>
<td>kV</td>
<td>IPC TM-650 2.5.5.5</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>> 500</td>
<td>°C</td>
<td>for PCB</td>
</tr>
<tr>
<td>Temperature withstand</td>
<td>60 min</td>
<td>220 °C</td>
<td>IPC TM-650 2.4.24.1</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.81</td>
<td>W/m K</td>
<td>ASTM E1461</td>
</tr>
</tbody>
</table>

Company. Capacitor PE 140 is chosen as a benchmark. This capacitor is widely used for resonance coupling, bypassing and feeding circuits in the high power radio transmitters, high-frequency tube welding equipment, high-frequency quenching and electric stoves, high-frequency driers, etc.

The main parameters are as follows: maximum voltage \(U_{peak} = 16 \) kV, ESR = 20 m\(\Omega\), ESL = 15 nH and \(C = 3 \) nF.

The targeted parameters of the newly designed capacitor are as follows: \(U_{peak} \geq 10 \) kV, ESR < 20 m\(\Omega\), ESL < 15 nH and \(C = 10 \) nF.

To design similar parameters that can be compared, one can use Equation (2) to determine the required main dimensions in the case if a plated topology is assumed. Here, \(d \) is dielectric thickness, \(S \) is active electrode surface area and \(\varepsilon_r \), \(\varepsilon \), represent the relative permittivity (dielectric constant) of a free space and the dielectric material between plates, respectively.

\[
C = \varepsilon_0 \epsilon_r \frac{S}{d} .
\]
both sides are made asymmetrically to compensate the
different length of individual interconnection legs. The
structure is further supported by a distance segments
(5×18×120 mm), which are also made of copper and which
significantly improve the overall mechanical stiffness. Their
other advantage lies in the future possibility of improving
ventilation by installing forced air cooling ducts. As seen
in Figure 1, the active area of the capacitor plates are
purposely reduced to form a “dielectric enlarging” that
will increase the voltage breakdown and simultaneously
minimize the partial discharge activity.

3 Manufacturing process

3.1 Soldering and surface finishing

The interconnections between all the construction
parts are made using soft soldering. During the soldering
process the paste S6M-XM3S has shown perfect
temperature behavior while reaching satisfactory low
reflow temperature (182 °C) and good electrical properties
of resulting interconnections. The solder paste was applied
onto each contact surface in a very thin layer. The capacitor
structure was stacked into the supporting frame (Figure 2
- left) to avoid layers to move during the soldering process
(reflow).

The key issue is to find a proper heating source for
the soldering process that will protect the surface from
any damage. Direct resistance heating is not feasible due
to the geometry issues. Indirect resistive heating (heating
hotplate) is inappropriate because of really low thermal
conductivity of dielectric material. Induction heating is
possible, but it requires special equipment, which makes
the technology very expensive for the prototype.

The high temperature air-flow heating cannot be used
since it will irreversibly damage the surface, which was
observed when manufacturing the first prototype. The best

Figure 1 Basic technical layout (top), model (bottom)

Figure 2 Capacitor prototype: in a soldering frame (left), finished (right)
Figure 3 Heating process in Galden vapor; temperatures (color lines) measured with high quality sensors (PT100) located in the center of the distance elements, required temperature (black dashed line). Breakdown tests of one layer of the capacitor after the surface finishing (right).

Figure 4 Capacitor in one half of housing, 3D model (left) and photo (right).

Figure 5 Measured ESR (left) and ESL (right).

Table 2 Measured capacitor parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Frequency</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum repeatable AC voltage</td>
<td>U_{peak}</td>
<td>100 kHz</td>
<td>12</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 MHz</td>
<td>12</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MHz</td>
<td>12</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz</td>
<td>10.45</td>
<td>nF</td>
</tr>
<tr>
<td>nominal capacitance</td>
<td>C_n</td>
<td>1 MHz</td>
<td>11</td>
<td>nF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MHz</td>
<td>14</td>
<td>nF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz</td>
<td>112</td>
<td>mΩ</td>
</tr>
<tr>
<td>equivalent series resistance</td>
<td>ESR</td>
<td>1 MHz</td>
<td>14</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MHz</td>
<td>0.556</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz</td>
<td>57.9</td>
<td>nH</td>
</tr>
<tr>
<td>equivalent series inductance</td>
<td>ESL</td>
<td>1 MHz</td>
<td>6.1</td>
<td>nH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MHz</td>
<td>0.0206</td>
<td>nH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 kHz</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>nominal current (RMS value)</td>
<td>I_n</td>
<td>1 MHz</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 MHz</td>
<td>50</td>
<td>A</td>
</tr>
</tbody>
</table>
results were finally reached using the Galden vapor heating seen in Figure 3 (left side).

The capacitor voltage breakdown is not directly given by a dielectric materials and thickness, but it is also influenced by the surface partial discharges. Application of the surface dielectric coating (silicon lacquer HCS Electrolube) will keep the partial discharge activity at the minimal level (Figure 3) and will protect the surface from moisture and pollution. The surface finishing was applied by soaking, dripping and curing after the soldering process.

3.2 Housing

The housing is the final step of the design and manufacturing process and is important due to protection against an electric shock. The housing is composed of the two components (4 mm thick wall) fabricated by a 3D printer using ABS material having sufficiently high electrical strength [20]. The capacitor placed in one half of housing is shown in Figure 4.

4 Experimental verification

The prototype has been tested in a wide frequency range (from 10 to 2000 kHz) using a precise laboratory RLC-meter (Keysight E4980A). The frequency characteristics of the constructed capacitor are compared to characteristics of existing commercial high-quality capacitor (Vishay PE 140).

Both the ESR and ESL in terms of frequency are shown in Figure 5. As obvious, the constructed capacitor shows better results starting the higher tested frequencies (> 750 kHz for ESR and > 200 kHz for ESL). This could be improved/adjusted by choosing another substrate for the capacitor plates. The material that was used is predicted mainly for very high frequencies. Compared to that, Vishay PE 140 (3 nF and more) is designed for frequencies up to 100 kHz only.

Measured parameters of the manufactures capacitor under different tested frequencies are given in Table 2. The data correspond to the graphs in Fig. 5.

5 Conclusions

Since the high-voltage high-frequency and high-quality capacitors are very expensive and usually not accessible on the market, a capacitor of the new design has been developed. The capacitor is constructed using the soft soldering and the geometry design allowing to increase the voltage breakdown and to minimize the partial discharge activity.

The capacitor housing works as the protection against the electric shock and forms a supporting mold for possible resin casting. As shown in Figure 5, the designed capacitor exhibits better performance compared to the Vishay capacitor starting at a frequency of 800 kHz and higher.

The parameters reached during the laboratory measurement are listed in Table 2.

The manufactured capacitor has also been successfully tested as a compensation capacitor for the 5 kW wireless power charger [21].

Acknowledgment

This research has been supported by the Ministry of Education, Youth and Sports of the Czech Republic under the RICE - New Technologies and Concepts for Smart Industrial Systems, project No. LO1607 and by funding program of the University of West Bohemia number SGS-2018-009.

References

