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POSUDENIE STRATEGII TARIFIKACIE PRUZNEHO
PREVADZKOVEHO ZATAZENIA NA KOMUNIKACNOM SPOJI

EVALUATION OF PRICING STRATEGIES OF ELASTIC TRAFFIC
ON A SINGLE COMMUNICATION LINK

Budiice siete s integrovanymi sluzbami, podporujtice viaceré triedy prevddzkového zataZenia, budii vyZadovat zdakaznicke stratégie riade-
nia pristupu a zdielania frekvencného pdsma, ktoré splnia rézne poZiadavky na zarucenii kvalitu sluzieb (QoS) alebo ddtovy tok a pruznost
sluzieb. Vysledky sucasného vyskumu ukazuju, Ze je doleZité overit riadenie pristupu volani (CAC) pre pruzné prevddzkové zatazenie, nakolko
algoritmus CAC umoZnuje napriklad zabrdnit relaciam TCP pre nadmernii degraddciu priepustnosti [1], [2]. Aby bolo mozné pre pruiné
volania urcit optimalny algoritmus CAC, overili sme na zdklade modelu spoja zavedeného v [ 2] pomocou Markovovej tedrie rozhodovania rozne
strategie tarifikovania. Ukdzeme, Ze optimalizdacia CAC maximalizuje nielen prijmy, ale tiez zvysuje pravdepodobnost blokovania previdzky
tokov s vysokou prioritou a QoS pruzného prevdadzkového zataZenia, ak je tarifikacnd funkcia pouzitelnd.

The future integrated service networks supporting multiple traffic classes will require customized admission control and bandwidth sharing
strategies, which meet the diverse needs of QoS (Quality of Service)-assured (stream) and best-effort (elastic) services. Recent research results
indicate that it is meaningful to exercise call admission control (CAC) even for elastic (best-effort) traffic, because CAC algorithms provide
a means to prevent e.g. TCP sessions from excessive throughput degradations [1], [2]. Based on a model of a single link introduced in [2], we
evaluate different pricing strategies assigned to elastic calls by determining an optimal CAC using Markov Decision theory. We will show that
optimizing CAC not only maximizes average revenue, but also improves blocking probability of high priority stream traffic and QoS of elastic

traffic as long as appropriate pricing functions are applicable.

1. System Model

We formulate our system model following the approach
described in [1] and [2].

Traffic Model We investigate a single link, to which two types
of traffic classes offer load: stream and elastic. Stream traffic is
supposed to represent a service with strict QoS guarantees (e.g.
VoIP in IP or CBR in ATM), while elastic traffic models best
effort-like services (e.g. TCP in IP, ABR in ATM). Stream calls are
described by their arrival rate A, departure rate u; and peak rate
B, and elastic calls by their call arrival rate A,, their ideal departure
rate u,, their peak rate B, and minimum rate r,,,,*B, (0 = r,,,, =
= 1). Both types of calls arrive according to independent Poisson
processes and the holding time for stream flows is exponentially
distributed with mean g, ". In case of elastic calls the number of
bits to transfer is exponentially distributed with mean B,* M;l- By
ideal departure rate we mean that the actual service ratio r(t) of
elastic calls in progress may fluctuate between r,,,, and 1, thus the
service time increases accordingly. All elastic connections in
progress on the link share the available bandwidth equally among
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them [4]. A newly arriving call will be accepted if there is enough
free capacity on the link by the compression of elastic flows
(elastic flows can be compressed down to 7,,;,,*B,). If the available
free capacity on the link is smaller than the minimum rate of the
new call, then the flow will be rejected. When a flow departures
elastic calls inflate their bandwidth consumption up to B,.

System Description Let C denote the link capacity. The system
under investigation (with the above assumptions regarding the
arrival processes and holding times) is a Continuous Time Markov
Chain (CTMC) whose state is uniquely characterized by (n,(?),
n,(t)) where n,(¢) is the number of stream calls and n,(?) is the
number of elastic calls on the link at time 7 (0 = n,(¢) = [C/ B,
0=n,(t) = UC — nl(¥)) | (r,;, * B,)D. Let the state space S.
The vector (n,(), n,(?)) uniquely specifies what service ratio r(¢)
of in-service elastic calls receive 7(t) = min[1l; (C — n,(¢) * B,) /
| (ny(t) * B,)]. In order to obtain the performance measure of this
system we need to determine the CTMC’s generator matrix Q and
its steady state solution, P. The non-zero transition rates of
generator matrix are:
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q(ny, nys ny + 1, ny) = Ay
q(ny, nysny — 1, my) = ny -y
q(ny, nysny,ny + 1) = Ay
q(ny, nys ny, ny = 1) = ny - ry(ny, ny) * py
according to call arrival or departure. The state probability vector

has to satisfy Z p; =1, and PQ = 0. Let B;denote the blocking
JES - )

probability vector of traffic class i. B; contains those states where

a newly arriving call from traffic class i is blocked.

B, ={(n;, ny) €S:(n + 1, n") &S] - stream
B, ={(n;, ny) € S:(ny, n, + 1) & S} - elastic
Then the blocking probability of traffic class i is

Pi= > Py (1)
(”1’ /IZ)EBI
To get the average holding time of elastic calls we need to
know the mean number of elastic flows on the link from

Eln,] = Z n2p(nl,n2) (2)

(nl, nz)ES
where 7, is the number of elastic calls in all state. From Little’s
formula the mean time an elastic call spends in the system is
E[T,] = E[n,] | (A, - (1 — P,)) and the average service ratio of
elastic flows is r,,, = 1/ (E[T,] * o).

Pricing Model To represent that stream and elastic calls are of
different value to the provider we also assume that both types of
calls generate revenue that is a function of the occupied bandwidth.
The link-wide instantaneous revenue accumulation rate p(f) is
given by

p() = ny (1) * By + ny(1) * By * @(By, r(0), 7,1) 3)

We assume that a unit stream bandwidth generates revenue
with a unit rate, while a unit elastic bandwidth generates revenue
with a rate proportional to ¢.

Optimal CAC Policy based on Markov Decision Theory The
simplest call admission policy (CAC) may be the one, which admits
a new call whenever the link is capable to accommodate it (i.e. by
compressing all elastic flows down to their minimum ratio r,,,,,).
Note, that we will refer to this kind of CAC ‘no Markov Decision’
(no_MD) in Section 4. We argue that there is a need to apply more
sophisticated CAC policies with the following two reasons. First,
the provider is seeking after to increase its income, therefore it is
straightforward to price stream flows requiring strict QoS guaran-
tees higher and prefer them whenever both stream and elastic
flows aspire for admission. Second, users generating stream flows
expect better service deservedly for their money.

We aim at finding a CAC policy that assigns to each system
state a decision whether to admit or reject arriving stream and
elastic calls so that the long-term revenue is maximized. To
achieve our goals we apply Markov Decision theory [3], which
algorithmically takes into account the revenue generation rate of
different system states and yields the optimal solution in a finite
number of steps.

2. Pricing Strategies

Formula (3) allows a multitude of pricing strategies to apply
to elastic calls. We present two of them, which we think are rele-
vant in the context of optimizing CAC to achieve maximum pos-
sible revenue for the provider and improve QoS and blocking
probability of stream flows. First of all we introduce our underly-
ing assumptions.

First, the price of a stream call’s unit bandwidth should be
higher than that of an elastic call to be able to satisfy strict QoS
requirements by ensuring that only a fraction of users will claim
to those services. Secondly, it is beneficial to price elastic calls
requiring larger minimal service ratios r,,, higher. (These calls
have a larger percentage of their bandwidth guaranteed and are
more like to stream calls.) Otherwise, subscriber may spare money
by offering a wider band elastic call instead of an expensive stream
call (B1 = r,,, * B,). We have found two simple pricing strategies
fulfilling the above requirements (see Fig. 1).

2.1. ‘Linear’ Pricing

The revenue generation factor of elastic traffic is directly
proportional to the service ratio. (Represented as a line on Fig. 1,
which would begin from the origin if we could decrease the service
ratio down to zero) (¢, (1) = revy, * r(t) = k * r,,;, * r(t)). This
strategy fulfills both criteria mentioned above, provided constant
k falls into range (0 < k =< 1/r,,,,). Note that different r,,, values
entail lines with different gradient on Fig. 1.
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2.2. ‘Concave’ Pricing

At the second solution this line is shifted up and its gradient
is smaller than that of the other. In this case the revenue rate has
two parts. One of them is a guaranteed rate, what the customer
always has to pay. The best effort part has linear increment, which
has to be paid when the service ratio is greater than the minimum
service ratio.

(@eon(l) = revy * 1,y + revy, * (r(t) = 1,,)), Which meets the
above mentioned requirements if 0 =< rev,, < rev, =< 1. So the
curve must be concave, hence the name.

Average revenue (rev_be=0.05, rmin=1)
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3. Numerical Results

To evaluate the pricing strategies we investigated a single link
of capacity C = 40 Mbps. Stream calls with bandwidth demand
B, = 8 Mbps arrive with intensity A, = 1 s, while elastic calls
with bandwidth demand B, = 1 Mbps (peak) arrive with intensity
A, = 857!, where r,,, decreases from 1.0 down to 0.2. The holding
times of two traffic classes are assumed to be exponential with
mean values 1/, = 1sand (ideally) 1/u, = 4s. Aside from r,,,,,,,
our moving parameters are rev, (assuming values 0.05, 0.1, 0.2, 0.5,
1) and rev,, (assuming values 0.05, 0.2, 0.4). The offered traffic to
the link is equal to its capacity in all our measurements, hereby
we were modeling a good provisioned network (link). Our main
measures of interest are long-term average revenue, stream and
elastic class blocking probability and average elastic service ratio
(r4,) and holding time. Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6
show these measures as the function of guaranteed revenue factor
(rev,) for a fixed best-effort revenue factor (rev,,) and minimal
service ratio (r,,;,) of elastic calls.

On Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 we compare three
kinds of CAC algorithms labeled no MD’, ‘MD concave’ and ‘MD
linear’. no MD’ stands for the simple CAC that does not take into
account revenue generation rates of calls, but works on an is-
enough-bandwidth basis (see Section 2.). The other two CAC’s are
outcome applying the Markov decision optimization in the same
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environment (with the same elastic 7,,,,,) as in case of the respective
‘no MD’ CAC, using respective pricing strategies as input to the
optimization. To be able to compare the linear and concave pricing
strategy we first apply the ‘no MD’ CAC and based on the resulting
average elastic service ratio (r,,,) we calculate the gradient of the
linear strategy (rev;,) as the function of concave parameters as
follows: rev;,, = (revy * Foiy T (Fayg = Fonin) * 1€Vpe) | 1y (s€€
Fig. 1). Thus, under ‘no MD’ both strategies will produce the
same average revenue (they ‘offer’ the same amount of revenue to
the network).

Fig. 2 shows the average revenue of the link in function of guar-
anteed revenue factor (rev,) of elastic calls. Naturally, the greater is
the rev,, the greater is the long-term average revenue. This figure
also reveals that Markov Decision is only capable of effective
increase average revenue when elastic flows are much lower priced
(rev, is close to 0.05), however, at the price of much higher elastic
blocking probabilities. Comparing two pricing policies in terms of
guaranteed revenue rate of elastic calls there is no sufficient vari-
ance.

Blocking probability of stream traffic
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Blocking probability of elastic traffic
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Fig. 3 and Fig. 4 show interesting results. Even if there is no
considerable average revenue increase with MD, the blocking prob-
abilities are much more effected. Without MD, stream calls have
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much higher blocking probability than elastic calls. MD, however,
decreases the blocking probability of stream traffic, while that of
elastic flows will be increased. We just mention that by applying
MD elastic average service rate (r,,,) has been increased provid-
ing better QoS to elastic flows (Fig. 5).

In linear pricing case the blocking probability of stream calls
decreased more than when using the concave pricing policy. Anal-
ogously, blocking probability of elastic calls increased more by the
linear policy. These results are caused by two phenomena. The MD
algorithm is blocking elastic flows even if there was place for them
on the link to admit newly arriving stream calls with higher pro-
bability. Elastic calls can expand more in the meantime therefore
the average rate of service ratio shifts right. In linear pricing case
this expansion generates the same per unit bandwidth revenue as if
we admitted more elastic calls with smaller service ratio. However,
in case of concave pricing, increase of average service ratio would
result in lower per unit-bandwidth revenue, since the gradient of
its revenue generation factor is smaller. So, the smaller is the
service ratio of elastic flows priced concave, the greater is the
long-term average revenue of the link. Therefore the algorithm
considers the probability of arriving a new great-revenue stream
call of less value, which causes greater blocking probability for
stream traffic.

Average service ratio of elastic traffic (rev_be=0.05,
rmin=0.2)
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Fig. 5 shows the average service ratio of elastic flows. In
accordance with the above mentioned phenomena if the revenue
factor of guaranteed part is much higher than that of the best effort
part, in case of concave pricing strategy MD tries to keep the
average service ration of elastic calls near minimum service rate. In
the linear pricing case this ratio increased much more since more
elastic calls are blocked. If the guaranteed part is lowly priced then
the effect of second phenomenon diminishes, therefore the concave
curve approximates to linear. Fig. 6 shows the mean holding time
of elastic calls, which is really for subscribers. It is inversely
proportional to the average service rate, therefore in linear pricing
case the mean time that an elastic call spends in the system is
smaller than in concave pricing case.

4. Conclusion

In this paper we studied pricing policies for elastic flows to be
applied on a communication link accommodating stream and
elastic calls. First, we showed a model that is able to describe the
dynamics of the link and then presented elastic pricing policies
which in combination with Markov Decision optimization can
yield better blocking probability measures for high priority stream
traffic and maximize revenue of network provider.
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