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1. Introduction

For the contemporary technical and programmable level of the
reachable computer means (personal computers, minicomputers,
supercomputers, etc.) the use of various forms of basic principles
of the parallel activity is dominant [8, 15, 16]. For example in
section of technical equipment the continuous speeding up of the
individual processor performance is achievable mainly through
the parallel activity of the pipeline execution in combination with
blowing up the capacity and number of various buffer memories
(caches).

In the field of programming equipment the parallel support
goes also in two levels[15, 17, 18]. The first level forms the district
of the operation systems and in general the system supporting pro-
gramming tools. The second level creates the user developing pro-
gramming environments, which support the development of the
modular application programs as the basic condition to their poten-
tial parallel activity. This parallel support goes in this time up to
the level of the elementary program elements in the form of the
objects (OOP – object oriented programming).

The architectures of the parallel systems
In system classification we can divide parallel systems to the

two very different groups [1]: 
● synchronous parallel architectures. To this group belong practi-

cally all known parallel architectures except the computer net-
works. The basic system properties are given through the exis-
tence of some kind of the common shared memory M by parallel
processors Pi , which in substantial measure simplifies their appli-
cation programming using. The principal model is illustrated in
Fig. 1.

● asynchronous parallel architectures. This group covers the field
of various forms of computer networks. Their basic property is
the mutual interconnection both in the remote form of the dis-

tributed memory moduls Mk and the parallel processors Pi with
using the existed telecommunication lines (WAN networks) and
in the local form in reaching range of the used fixed lines (LAN
networks), respectively. There is, in contrast to the first discussed
group, no form of common shared memory in the connected
system. The principal model is in Fig. 2.

Fig. 1. Model of the system with shared memory.

Fig. 2. Model of the parallel system with distributed memory moduls.
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The load balancing, inter-processor communication and trans-
port protocol for such machines are being widely studied [6, 7, 13,
14, 15, 18]. With the availability of cheap personal computers, work-
stations and networking devises, the recent trend is to connect
a number of such workstations to solve computation-intensive tasks
in parallel on such clusters. To exploit the parallel processing capa-
bility of a NOW (Network of workstations), the application program
must be parallelised. The effective way how to do it for a particu-
lar application problem (decomposition strategy) belongs to the
most important step in developing a effective parallel algorithm
[7, 16, 17].

The development of the parallel network algorithm includes
the following activities:
● Decomposition – the division of the application into a set of

parallel processes and data
● Mapping – the way how processes and data are distributed

among the nodes
● Inter-process communication – the way of corresponding and

synchronisation among individual processes
● Tuning – alternation of the working application to improve per-

formance (performance optimisation)

When designing a parallel program the description of the high-
level algorithm must include also the method we intend to use to
divide the application into processes and to distribute data to dif-
ferent nodes – the decomposition strategy. The chosen decompo-
sition method drives the rest of program development. This is true
in case of developing new application as porting serial code. The
decomposition method says how to structure the code and data
and defines the communication topology.

To choose the best decomposition method for these appli-
cations, it is necessary to understand the particular application
problem, the data domain, the used algorithm and the flow of
control in given application. Therefore, according to the character
of given task the following decomposition models are used:
● perfectly parallel decomposition
● domain decomposition 
● control decomposition
● object-oriented programming – OOP.

2. The role of performance

Quantitative evaluation and modelling of hardware and soft-
ware components of the parallel systems are critical for the delivery
of high performance. Performance studies apply to initial design
phases as well as to procurement, tuning, and capacity planning
analysis. As performance cannot be expressed by quantities inde-
pendent of the system workload, the quantitative characterisation
of application resource demands and their behaviour is an impor-
tant part of any performance evaluation study. Among the goals
of parallel systems performance analysis is to estimate the perfor-
mance of a system or a system component or an application, to
investigate the match between requirements and system architec-
ture characteristics, to identify the features that have a significant

impact on the application execution time, to predict the perfor-
mance of a particular application on a given parallel system, to
evaluate different structures of parallel applications. To the per-
formance evaluation we briefly review the techniques most com-
monly adopted for the evaluation of parallel systems and its
metrics. 

2.1 Performance evaluation methods

To the performance evaluation we can use the following methods:
● analytical methods

● application of queueing theory [7, 8, 9, 10, 11, 12]
● Petri nets [7, 14]

● simulation methods [2, 5]
● experimental measurement [7, 14]
● benchmarks [14, 16]

● direct measuring of particular developed parallel application.

In order to extend the applicability of analytical techniques to
the parallel processing domain, various enhancements have been
introduced to model phenomena such as simultaneous resource
possession, fork and join mechanism, blocking and synchronisa-
tion. Hybrid modelling techniques allow to model contention both
at hardware and software levels by combining approximate solu-
tions and analytical methods. However, the complexity of parallel
systems and algorithms limits the applicability of these techniques.
Therefore, in spite of its computation and time requirements, sim-
ulation is extensively used as it imposes no constraints on model-
ling.

Evaluating system performance via experimental measurements
is a very useful alternative for parallel systems and algorithms.
Measurements can be gathered on existing systems by means of
benchmark applications that aim at stressing specific aspects of
the parallel systems and algorithms. Even though benchmarks can
be used in all types of performance studies, their main field of
application is competitive procurement and performance assess-
ment of existing systems and algorithms. Parallel benchmarks extend
the traditional sequential ones by providing a wider set of suites
that exercise each system component targeted workload. The Park-
bench suite especially oriented to message passing architectures and
the SPLASH suite for shared memory architectures are among
the most commonly used benchmarks [14].

2.2. Performance evaluation metrics

For evaluating the parallel algorithms there have been devel-
oped several fundamental concepts [1, 6]. Tradeoffs among these
performance factors are often encountered in real-life applications.

2.2.1. Performance concepts

Let O(s, p) be the total number of unit operations performed
by p-processor system for size s of the computational problem and
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T(s, p) be the execution time in unit time steps. In general, 
T(s, p) � O(s, p) if more than one operation is performed by p
processors per unit time, where p � 2. Assume T(s, 1) � O(s, 1) in
a single-processor system (sequential system). The speedup factor
is defined as:

S(s, p) � �
T

T
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1
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(Note that this speedup is a limit case and almost never
obtained.) It is a measure of the speedup obtained by given algo-
rithm when p processors are available for the given problem size
s. Ideally, since S(s, p) � p, we would like to design algorithms
that achieve S(s, p) � p.

The system efficiency for an p-processor system is defined by:
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A value of E(s, p) for some p approximately equal to 1 indicates
that such a parallel algorithm, using p processors, runs approxi-
mately p times faster than it does with one processor (sequential
algorithm).

2.2.2. The isoefficiency concept

The workload w of an algorithm often grows in the order O(s),
where s is the problem size. Thus, we denote the workload w � w(s)
as a function of s. In parallel computing is very useful to define an
isoefficiency function relating workload to machine size p needed
to obtain a fixed efficiency E when implementing a parallel algo-
rithm on a parallel system. Let h be the total communication over-
head involved in the algorithm implementation. This overhead is
usually a function of both machine size and problem size, thus
denoted h � h(s, p).

The efficiency of a parallel algorithm implemented on a given
parallel computer is thus defined as

E(s, p) � �
w(s)

w

�

(s

h

)

(s, p)
� (3)

The workload w(s) corresponds to useful computations while
the overhead h(s, n) is the useless time attributed to synchronisation
and data communication delays. In general, the overhead increases
with respect to both increasing values of s and p. Thus, the effi-
ciency is always less than 1. The question is the relative growth
rates between w(s) and h(s, p).

With a fixed problem size (fixed workload), the efficiency
decreases as p increase. The reason is that the overhead h(s, p)
increases with p. With a fixed machine size, the overhead h grows
slower than the workload w. Thus the efficiency increases with
increasing problem size for a fixed-size machine. Therefore, one
can expect to maintain a constant efficiency if the workload w is
allowed to grow properly with increasing machine size.

For a given algorithm, the workload w might need to grow
polynomially or exponentially with respect to p in order to main-

tain a fixed efficiency. Different algorithms may require different
workload growth rates to keep the efficiency from dropping, as p
is increased. The isoefficiency functions of common parallel algo-
rithms are polynomial functions of p; i. e., they are O(pk) for some
k � 1.

We can rewrite the equation for efficiency E(s, p) as E(s, p) �
� 1/(1 � h(s, p)/w(s)). In order to maintain a constant E, the
workload w(s) should grow in proportion to the overhead h(s, p).
This leads to the following relation:

w(s) � �
1 �

E

E
� h(s, p) (4)

The factor C � E/(1 � E) is a constant for a fixed efficiency E.
Thus we can define the isoefficiency function as follows: fE(p) �
� C . h(s, p). If the workload grows as fast as fE(p), then a con-
stant efficiency can be maintained for a given algorithm-architec-
ture combination. 

3. Theoretical part

Partial differential equations (PDE) are used to model a variety
of different kinds of physical systems: weather, airflow over a wing,
turbulence in fluids, and so on. Some simple PDE’s can be solved
directly, but in general it is necessary to approximate the solution
at a finite number of points using iterative numerical methods.
Here we show how to solve in parallel one specific PDE – Laplace’s
equation in two dimensions – by means of a grid computation
method that employs a finite-difference method. Although we
focus on this specific problem, the same programming techniques
are used in grid computations for solving other PDE’s and in
other applications such as image processing etc.

3.1. Laplace’s Equation

Laplace’ equation is a practical example of Jacobi iteration
application. The equation for two dimensions is as follows: 

�
∂
∂

2

x

�
2� � �

∂
∂

2

y

�
2� � 0 (5)

Function �(x, y) represents some unknown potential, such as
heat or stress.

Given a two-dimensional region and values for points of the
region boundaries, the goal is to approximate the steady-state
solution �(x, y) for points in the interior by the function u(x,y).
We can do this by covering the region with a grid of points and to
obtain the values of u(xi , yj) � uij as follows:

Let us consider square region (a, b) � (a, b), thus for coordi-
nates of grid points is valid xi � i * h, yj � j * h, h � (b�a)/N for
i,j � 0, 1, …, N. We replace partial derivations of � � u(x, y) by
the differences of ui, j :
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and after substituting (6) in (5) we obtain

ui, j � (ui�1, j � ui�1, j � ui, j�1 � ui, j�1)/4 i, j � 1, 2, … N;

Each interior point is initialised to some value. The steady-
state values of the interior points are then calculated by repeated
iterations. On each iteration the new value of a point is set to
a combination of the previous values of neighbouring points. The
computation terminates either after a given number of iterations
or when every new value is within some acceptable difference � 
 0
of the previous value.

There are several iterative methods for solving Laplace’s equa-
tion, including Jacobi iteration, Gauss – Seidel iteration, successive
over-relaxation (SOR), and multigrid [1, 6, 19]. In this paper we
show parallel implementation of Jacobi iteration using Message
Passing Interface (MPI). The algorithms for other methods con-
verge more rapidly but are somewhat more complex than Jacobi
iteration. Their parallel implementations have similar communica-
tion and synchronisation patters and these aspects are the most
important.

3.2. Jacobi iteration

We applied Jacobi point iterative method to the grid on given
region (0, 1) � (0, 1) for which the boundary conditions are known.
(N �1) * (N�1) is the number of interior grid points. The Laplace’
equation will be in form:

ui, j � (ui�1, j � ui�1, j � ui, j�1 � ui, j�1)/4  i, j � 1, 2, … N�1;

u0, j � � yj
2 ; uN, j � 1 � yj

2 ;   j � 1, 2, … N�1; (7)

ui, 0 � xi
2 ; ui, N � xi

2 � 1;   i � 1, 2, … N�1;

where

xi � i/N;       yj � j/N;

In this case the exact solution is known:

Ui,j � xi
2 � yj

2

3.3. Local communication

A local communication structure is obtained when an opera-
tion requires data from a small number of other tasks. It is then

straightforward to define channels that link the tasks responsible
for performing the operation (the consumers) with the tasks holding
the required data (the producers) and to introduce appriopriate
send and receive operations in the producer and consumer tasks,
respectively.

For Jacobi finite difference method a two-dimensional grid is
repeatedly updated by replacing the value at each point with some
function of the values at a small fixed number of neightbouring
points. The following expression uses a four-point stencil to update
each element Xi, j of a two -dimensional grid X:

Xi,j
(t�1) � (X(t)

i�1, j � X (t)
i�1, j � X (t)

i, j�1 � X (t)
i, j�1)/4 (8)

This update is applied repeatedly to compute a sequence of
values X (1)

i, j , X (2)
i, j , … and so on. The notation X (t)

i, j denotes the value
of grid point Xi, j at step t.

Let us assume that a partition has used domain decomposi-
tion techniques to create a distinct task for each point in two
dimensional grid. Hence, a task allocated the grid point Xi, j must
compute the sequence 

X (1)
i, j , X (2)

i, j , X (3)
i, j , … (9)

This computation requires in turn the four corresponding
sequences

X (0)
i�1,j , X (1)

i�1,j , X (2)
i�1,j , …

X (0)
i�1,j , X (1)

i�1,j , X (2)
i�1,j , … 

(10)
X (0)

i,j�1 , X (1)
i,j�1 , X (2)

i,j�1 , … 

X (0)
i,j�1 , X (1)

i,j�1 , X (2)
i,j�1 , … 

Fig. 3. Local communication.
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which are produced by four tasks handling grid points Xi�1, j ,
Xi�1, j , Xi, j�1 and Xi, j�1 , that is, by its four neighbours in the grid.
For these values to be communicated, we define channels linking
each task that requires a value with the task that generates that
value. This yields the channel structure illustrated in Fig. 3. For
first T-steps each task then executes the following logic:

for t = 0 to T - 1 do
begin
send X(t)i,j to each neighbour;
receive X(t)i-1,j, X(t)i+1,j, X(t)i,j-1, X(t)i,j+1 from neighbours;
compute X(t+1)i,j using Equation (8);

endfor

4. Experimental part and results

We used two decomposition strategies in order to analyse
their influence to the performance evaluation: 

Fig. 4. Domain decomposition 1. Fig. 5. Domain decomposition 2.

a) the decomposition of Jacobi iteration according to Fig. 4
(domain decomposition 1). In this strategy there was given
each computation node a horizontal strip of Uij . After each
iteration „boundary conditions”of the strip have to be shared
with neghbouring nodes (Fig. 6 and 7). 

b) the decomposition according to Fig. 5 (domain decomposition
2). In this strategy we used twice much computation nodes as
in the first case. 

In Fig. 8. we illustrate the performance of both decomposi-
tion strategies. We can see that when using more computation
processors we did not come to increased performance. The causes
are in increasing the overheads (control, communication, synchro-
nisation) more than the speed-up of higher computation nodes.
The realised experiments were done on parallel system at EPCC
Edinbourgh (parallel system Cray T3E). 

Fig. 6. The shared points. Fig. 7. Exchange of the values.

Fig. 8. The results ( M = number of used processors)
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