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THE AIRCRAFT LANDING PROBLEM

The problem studied in the paper is an air traffic problem on the airport runway. The goal is finding an aircraft landing sequence that
meets the time window for the particular aircraft and at the same time the separation times between two aircrafi, which is necessary for the
security of landings. The integer programming formulations and the relationship to the traveling salesman problem with cumulative costs are

shown.
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1. The scheduling aircraft landings problem

The problem is decision of the landing time for the set of
planes, which are in the radar horizon of an air traffic controller,
which involves the decision of sequencing of planes. There are two
basic conditions for this time: the landing time has to lie within
a specified time window and the landing times should follow a sep-
aration condition.

The lower bound of the time window for the particular plane
depends on the distance of the plane from the airport and the
speed of the plane, the upper bound of the time window depends
on the amount of fuel. An economic speed for each plane deter-
mines the preferred landing time so called target-landing time.

The second main important constraint is the separation time
between two planes. Each plane generates an air turbulence that
can be dangerous for successive planes. The intensity of the turbu-
lence depends on the type and weight of the plane. It must be
specified certain time distance, separation time, between planes.
There are two separation conditions:

a) complete separation conditions, if we have to ensure separa-
tion to all previous landing planes,

b) successive separation conditions, which ensure only separa-
tion to directly previous landing plane.

It can be proved that if the triangular condition for separation
times is satisfied the successive separation conditions ensure the
complete separation conditions. In other case the successive sep-
aration conditions are weaker than the complete separation con-
ditions.

The goal is either a maximum number of planes scheduled in
the time period or minimal mean landing time of all planes or
minimal deviation of the landing times from appropriate target
landing times.

The problem can be formulated for one or more runways, for
landings only, or the plane take offs only or for both landings and
take offs.
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2. Mathematical model of the aircraft-landing problem
with completes separation.

In [1] the following mixed integer zero-one formulation of the
problem is presented.

Notation:

P number of planes

E, the earliest landing time for plane i (i = 1, 2, ..., P)

L, the latest landing time for plane i (i = 1, 2, ..., P)

T, the target (preferred) landing time for plane i (i = 1, 2, ..., P)
S, the required separation time between plane i and plane j if plane
i lands before plane j

g; > 0 the penalty cost per time unit for landing before the target
time 7; for planei (i = 1, 2, ..., P)

h; > 0 the penalty cost per time unit for landing after the target
time T} for plane i (i = 1, 2, ..., P)

It's supposed £, = T, = L,,i=1,2, .., P and for all ;, j.

The variables in the model are:

¢, the landing time for the plane i (i = 1, 2, ..., P)

l.+ = max{0, 7, — #;] the landing time before target time
t; = max{0, 7, — t;] the landing time after target time

x; = 1 if plane 7 lands before (not necessarily directly) plane j, i,
=12, .., Pi#]j

x; = 0 otherwise.

Mathematical model of the aircraft landing problem with the
complete separation:

P
min > g,t," + hit;” (1
i=1
subject to
x,7+)cj,-=1,i,j=1,2,...,P,i¢j 2)

LS = L+ S;— By =t,0j=12..Pi#] (3
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E=4=<L,i=12.,P C))
L+t =t =T, i=12..,P (5)
Lot =0,i=1,2, .., P, x; €01},

Lj=12 ., Pi#j (6)

The equation (2) means that either plane i/ lands before plane
Jj or plane j lands before plane i. The landing time #; should be
greater than 7; with a difference which is the separation time S
(inequality (3) for x; = 0). If x; = 1, then inequality (3) is in the
form ¢, — L, + E; = t;and it is always satisfied due to the inequal-
ity (4).

The landing time ¢, should lie in the time window E;, L, (the
inequality (4)).

The equation (5) defines variables z,+ and #; which are the
differences of ¢, from the target time 7. The variables #," and 7,
are not defined by (5) uniquely, nevertheless the uniqueness of 7,
and ¢, is guaranteed by the fact that g; > 0 and &, > 0 in the
objective function (1).

Alternative objective function is the average landing time

P
(1/P) Zt,-. In this case the inequality (5) and the variables #;" and
i=1

i=

1, can be dropped.

Comment

For a given sequence of planes the determination of the optimal
landing times is a linear programming problem. We can obtain this
model by putting all variables x; to the appropriate values into the
model (1)-(6).

3. The heuristic method

Because of NP hardness of the ALP (Aircraft Landing Problem)
heuristic methods were proposed for the problem. One of them is
the greedy approach [3] based on priorities numbers p’;, in which
k-th plane is picked according to the lowest priority number p’,‘
The priority numbers are calculated as p_’,‘- = 8T, + eEEff-l- a;,
where 8, € are priority weights and «; is a perturbation of the pri-
ority.

EEf; is defined as the earliest time in which the plane j can
land given by the previous sequence of planes, that is, if the partial
sequence sy, S, .5, of planes is constructed already, then EEf =
= max{E;, max,{EE, ; + S, ;}}. The next plane to land is

sk = argmin p/;

JELs1> 52, s Sp—11 2

The earliest possible landing time for plane s, is EEfk.

This heuristic will not necessary find a feasible landing sequence
(it is possible that EEfk > ka ), in this case we can change the
parameters ; and try it again.

4. Mathematical model of the aircraft landing problem
with successive separation.

In this section we will solve the problem in which only suc-
cessive separation is enforced. If the triangular inequality s, =
=s; + sy forall i # j # k holds, the successive separation is suf-
ficient to ensure complete separation.

The aircraft-landing problem with successive separation can be
viewed as an open traveling salesman problem with time windows,
where nodes in this problem are the planes. The objective func-
tion is cumulative, so the special formulation, called traveling sales-
man problem with cumulative costs (or the deliveryman problem)
should be used [4].

The following formulation of the aircraft-landing problem with
successive separation is proposed.

Let x; = 1 if plane i lands directly before plane j, i, j = 1, 2,
v P I F ], X; = 0 otherwise.

P
min Zgitf + bt (7
i=1
»
Dx;=1j=01,..,P (3)
i=1
P
Sxy=Li=0,1..P 9
J=1

Lt 8= L+ S, — B —xp) =1,

Lj=0,1,.,Pi#/j>01=0 (10)
E=1=L,i=12..,P (11)
L+t -t =T,i=12.,P (12)
Lt =0i=12 .., P x; €01},

Lji=1,2,.,Pi#]j (13)

The equations (8) and (9) assure that only one plane precedes
and only one plane follows each plane. Plane 0 is artificial, so that
S,; = S = 0foralli.

oi — Pi

5. Aircraft landing problem for multiple runways

There are two or more runways on large international airports.
The plane-landing problem solves the question on which runway
the plane will land and at which landing time. There are two dif-
ferent separation times:
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a) separation times for two planes landing on the same runway S;, | Numerical experiments Table 1.
b) separation times for two planes landing on different runways No. data |No. planes No. Cost Opt. cost | Runtime
Sij- set Runways |Heuristic m| LINGO (sec.)
1 10 1 1210 700 1
It is assumed that 0 = 5; < §j.
2 120 90 1
The mathematical model (1)-(6) has to be modified so that 3 0 0 1
the equation (3) for determination of landing times should be 2 15 1 2030 1480 6
replaced by 2 210 210 3
3 0 0 1
Gt Syzpt s = 2p) = (Lt 8y = B =0y 3 20 I w70 | 82 4
ij=12 .. Pi#j (14) 2 60 60 2
3 0 0 2
where variable z; equals 1 if planes i and j land on the same runway 4 20 1 4480 2520 548
and equals 0 otherwise (the variable z; does not assign the planes (220)
to runways). For z; = 1 the constraint (14) corresponds the inequal- 2 680 640 2754
ity (3), for z; = 0 it is exchanged Sij for sij in (3). (1919)
3 130 130 75
_ (2299)
6. Computational results 4 0 0 )
Many computational results with using the models shown above > 20 ! 7120 3100 1379
[1] have been published. 020
2 1220 650 (11510)
The problem and models are tested by the author on the data 3 240 170 (1655)
sets provided by the OR problem library maintained by Beasley 4 0 0
(http//mscmga.ms.ic.ac.uk/info.html). There are 8 problems in this 6 30 1 24442 2444) 2(33)
data set, all of them were solved as the same model [1] and the ) 882 554 2482
results were compared. The computer system for the branch and (1568)
bound method LINGO ver.7 was used and run on Pentium II. The
results are presented in the table 1, where the original runtimes of 3 0 0 3
the computation from [ 1] are written in the brackets (if they differ 7 44 1 3974 1550 37(10)
significantly). 2 0 0 5
8 50 1 4390 1950 77 (111)
Acknowledgement P 260 135 301
The research was supported by the grant No. 402/03/1283 of (3450)
the Grant Agency of the Czech Republic and research project 3 0 0 9
CEZ:J18/98:311401001.

References

[1] BEASLEY, J. E., KRISHNAMOORTHY, M ., SHARAIHA, Y.M., ABRAMSON, D.: Scheduling aircraft landings - the static case.
Transportation Science, vol. 34 No. 2 (2000)

[2] BIANCO, L., MINGOZZI, A., RICCIARDELLI, S.: The Traveling Salesman Problem with Cumulative costs. Networks, vol. 23 (1993)

[3] ERNST, A. T., KRISHNAMOOTHY, M., STORER, R. H.: Heuristic and exact algorithms for scheduling aircraft landings. Networks
34 (1999)

[4] FISCHETTI M., LAPORTE, G., MARTELLO, S.: The delivery man problem and cumulative matroids. Operations Research vol. 41,
no. 6 (1993)

[5] MELNICEK, S.: Diplomovd prdce VSE 2002

KOMUNIKACIE / COMMUNICATIONS 4/2003 =« 91



