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FAST ANALYTICAL DESIGN OF MAXIMALLY

FLAT NOTCH FIR FILTERS

A novel fast analytical design procedure for the maximally flat notch FIR filters is introduced. The closed form solution provides recursive
evaluation of the impulse response coefficients of the filter. The discrete nature of the notch frequency is emphasized. One design example is

included to demonstrate the efficiency of the presented approach.
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1. Introduction

The narrow band digital filters are widely used in digital signal
processing. While narrow band-pass filters find their application
in the detection of signals, the narrow bandstop filters are frequently
used in order to remove a single frequency component from the
spectrum of the signal. The narrow bandstop filters are usually
called notch filters. In our paper we primarily deal with notch filters
but we keep in mind the close relation between these two types of
narrow band filters. The design of digital notch IIR filters is rather
simple. These filters are frequently used despite of their infinite
impulse and step responses, which can produce spurious signal
components that are unwanted in various applications. The notch
IIR filters consist of an abridged all-pass second-order section that
allows independent tuning of the notch frequency w,, T and the 3-dB
attenuation bandwidth [3]. The main drawback usually emphasized
in connection with FIR filters is the higher number of coefficients
compared to their IIR counterparts. However, this argument is
weakened continuously due to the tremendous advance in DSP
and FPGA technology. The decisive advantages of FIR filters are
their constant group delay and superior time response [8]. Thus
the implementation of FIR filters with one hundred coefficients
has a practical impact in numerous applications. A few analytical
procedures for the design of linear phase notch FIR filters have
recently become available [5]. The methods, which lead to feasible
filters, are generally derived by iterative approximation techniques
or by non-iterative, but still numerical procedures, e.g. the window
technique. In our paper we are concerned with completely analyt-
ical design of maximally flat (MF) notch FIR filters. We introduce
the degree formula, which relates the degree of the generating
polynomial, the length of the filter, the notch frequency, the width
of the notchband and the attenuation in the passbands. We derive
the differential equation for the generating polynomial of the filter.
Based on the expansion of the generating polynomial into the
Chebyshev polynomials, the recurrent formula for the direct com-
putation of the impulse response coefficients is derived. Conse-
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quently, the FFT algorithm usually required in the analytical design
of narrow band FIR filters is avoided. The proposed design pro-
cedure is recursive one. It does not require any FFT algorithm or
any iterative technique.

2. Polynomial Approximation,
Zero Phase Transfer Function

Here and in the following we use the independent transformed
variable w [6] related to the digital domain by

1
w= E(Z +z7h | o= pioT = cOSWT. @))]

We denote H(z) the transfer function of a notch FIR filter
with the impulse response h(m) of the length N as

N—1
H(z) =) h(m)z". (2)

m=0

Assuming an odd length N = 2n+1 and even symmetry of
the impulse response

a(0) = h(n), a(m) =2h(n = m),m=1..n (3)
we can write the transfer function of the notch FIR filter

Hiz) =z" [a(()) + Zi:l a(m) T,W(W)] (4)
where 7,,(w) is Chebyshev polynomial of the first kind. The
frequency response of the filter H(e’*T) can be expressed by the

zero phase transfer function Q(w)

H(™) = 77 O(eos wT) = 2" Q)| .-, "" 5)

Forw=0.5(z + zfl) .— ot = cos wT the zero phase trans-
fer function Q(w) represents a polynomial of the real variable w.
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It reduces to a real valued frequency response of the zero-phase
FIR filter. The zero phase transfer function Q(w) of the narrow
bandpass FIR filter is formed by the generating polynomial 4, ,(w)
while the zero phase transfer function Q,(w) of the notch FIR
filter is

0,(w) =1—4, ,(w). (6)

3. Maximally Flat Notch FIR Filter

For the design of MF notch FIR filter we propose the gener-
ating polynomial 4, (w) of the MF narrow bandpass FIR filter
introduced in [7]

A, ,(w) = C(1 —w)y’ (1 +w). 7

The notation 4, ,(w) emphasizes that p counts multiplicity of
zeros at w = 1 and ¢ corresponds to multiplicity of zeros at w = — 1.
Forming the derivative of the polynomial

dA, (w)

—2E = = —Cp(1 —wy (1 + W) +

dw
+ Cg(1 — wy(1 +w)™! (8)

and by simple manipulation of (7)

dA, (w
(1= w1+ wy Do)
dw
= —p(1 + w4, ,(w) + g(1 = w)4, (w) 9
: :
081
06
04
0.2
[4]
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Fig. 1. Generating polynomial A; ;,(w) (dashed) and the zero phase
transfer function Q (w) = I - A; ;(w) of the MF notch FIR filter with
extremal value for w,, = (37 - 3)/(37 + 3) = 0.85

we arrive at the differential equation for the generating polyno-
mial 4, ,(w)

a4, (w)

(1 —wd) +lp—q+ @+ qwld, (w)=0. (10)
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The differential equation (10) for the polynomial 4, (w)
forms a completely new concept in digital filter design as it pro-
vides the recursive evaluation of the impulse response coefficients
of the filter described in Section 5. The normalization of the gen-
erating polynomial 4, ,(w) constraints 4, (w,,) = 1 where w,, is
the position of the maximum of the generating polynomial 4,, ,(w)
as illustrated in Fig. 1. The normalization of the generating poly-
nomial 4, ,(w) results in

ptyq " pty /
A, W) = [T (1 - w)] [Z—q (1+ w)} (11)
The polynomial
0,w)=1-4,,w)
P q
=1—[m(1—w)} [M(lﬂ-w)} (12)
2p 2q

represents the real-valued zero phase transfer function of the MF
notch FIR filter of the real variable w = cos wT. For illustration,
the zero phase transfer function of the MF notch FIR filter
Q,4(w) = 1—A45 3;(w) is shown in Fig. 1. The corresponding ampli-
tude frequency response 20 log | H(e/*T)| [dB]

AeT
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Fig. 2. Amplitude frequency response 20 log | H(e’“T)| [dB] based on
the generating polynomial Q,(w) = 1 — Aj; ;,(w) from Fig. 1. The
parameters are @, T = 0.1766 1 and AwT = 0.1555 r for the
standard attenuation a = — 3.0103 dB

is shown in Fig. 2. The transfer function of the MF notch FIR
filter is

N—1
Hz)=> h(m)z " =z" (1~ A(p.g)(w)). (13)
m=0

4. Notch Frequency and the Degree of the Maximally
Flat Notch FIR Filter

The notch frequency w,, T is derived from the minimum value
of the zero phase transfer function Q,(w) (12) as
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w,, = cos w,, T = u.
q+tp
The notch frequency w,,T of the MF notch FIR filter is given
from (14) by the integer values p and ¢ exclusively. It is obvious
that for the specified filter length N = 2(p + ¢) + 1, exactly p +
+ ¢ — 1 discrete notch frequencies w,,T are available. From the
symmetrical case n/2 = p = q the degree equation

_ 100.05a|dB|
= log(1 — 10 )
AwT

(14)

(15)

log cos

can be derived. The relations for the integer values p, g read as
follows

,e [ ( “’;Tﬂ = [ ( w'z"Tﬂ |

The brackets [ | in (16) denote the rounding operation.

(16)

5. Impulse Response Coefficients
of the Maximally Flat FIR Filter

We can express the generating polynomial 4, ,(w) of the degree
n = p + ¢ as the sum of Chebyshev polynomials of the first kind
T, (w)

n

A, (W) = > a(m)T,(w).

m=0

7)

The coefficients a(m) define the impulse response i(m) (3)
of the length N = 2(p + ¢) + 1. Assuming the generating poly-
nomial 4, ,(w) of the MF narrow bandpass FIR filter in the sum
(17) we can write

(1= ) L2 2 S gmya -y T

dw m=1 dw

= a(m) %[T,H(w) — T, )] (18)
m=1

By introducing (17) and (18) into the differential equation
(10) and using the recursive formula for Chebyshev polynomials

Recursive algorithm for evaluation of the coefficients a(m)

Tpii(w) =2wT,(w) = T, (W) (19)
we get the identity
n m
> a(m) ST 00 = Ty 0] + (p = g)a(0) +
m=1
+ z a(m)(p — T, (w) + (p + @)a(0)w + (20)
m=1

u 1
+ > alm)(p + q) 5 [T1() + Ty (W)] = 0.
m=1

By iterating eq. (20) we have deduced a simple recursive algo-
rithm for the evaluation of the coefficients a(m) of the generating
polynomial 4, (w) of the MF narrow bandpass FIR filter. The
recursive algorithm is presented in Table 1. The coefficients /4(m)
of the impulse response of the MF notch FIR filter are obtained
from the coefficients a(m) of the MF narrow bandpass FIR filter
as follows

h(n) =1 —a(0), h(n = m) = fa—, m=1..n.

5 1)

6. Design of the Maximally Flat Notch FIR Filter

The goal of the MF notch FIR filter design is to find the two
integer values p and q in order to satisfy the filter specification as
precisely as possible. The design procedure is as follows:

1. Specify the notch frequency w,,7, maximal width of the
notchband AwT and the attenuation in the passbands a [dB]

as demonstrated in Fig. 2.

2. Calculate the minimum degree n (15) required to satisfy the
filter specification.

3. Calculate the integer values p and ¢ (16).

4. Check the notch frequency (14) for the obtained integer

values p, ¢ .

5. Evaluate the coefficients a(m) of the generating polynomial

A, ,(w) recursively (Table I).

6. Evaluate the coefficients of the impulse response /(m) of the

MF notch FIR filter (21).

Tab. 1

2n

given pq
initialization n=p+tgq
an+1)=0
body
(fork=n+ 110 3) (n + ka(k) + 2(2p — na(k — 1)
atk=2) =~ n+2—k
(end loop on k) (n + 2)a(2) + 2(2p — na(1)
a(0) = —

36 ¢ KOMUNIKACIE / COMMUNICATIONS 4/2004



It is worth of noting that a substantial part of coefficients of
the impulse response /(m) of the MF notch FIR filter has negli-
gible values. From this

Impulse Response Coefficients Table 2

m h(m) m h(m)
14 74 -0.000002 30 58 0.012289
15 73 -0.000003 31 57 0.002278
16 72 0.000000 32 56 0.019427
17 71 0.000018 33 55 -0.027483
18 70 0.000037 34 54 -0.003357
19 69 0.000010 35 53 0.042804
20 68 -0.000111 36 52 0.048063
21 67 -0.000245 37 51 -0.009353
22 66 -0.000101 38 50 -0.075616
23 65 0.000537 39 49 -0.065324
24 64 0.001173 40 43 0.029196
25 63 0.000480 41 47 0.106554
26 62 -0.002149 42 46 0.068113
27 61 -0.004302 43 45 -0.053105
28 60 -0.001388 44 0.880514
29 59 0.007135

fact follows the possible large abbreviation of the impulse response
of the MF notch FIR filter by the rectangular windowing without
significant deterioration of the frequency properties of the filter as
emphasized in [7].

7. Example of the Design of the Maximally
Flat Notch FIR Filter

Design the MF notch FIR filter specified by w,,7 = 0.35 mand
AwT = 0.15 7 for a = —3.0103 dB.

Using our design procedure we get n = [43.8256] — 44 (15),
p = [11.9644] — 12 and ¢ = [31.8610] — 32 (16). The filter length
is N = 89 coefficients. The actual filter parameters are w,, T =
0.3498 7 and AwT = 0.1496 7. The attenuation at the frequency
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ig. 3. Amplitude frequency response 20 log |H(e’*" )| [dB] based on
the zero phase transfer function Q(w) = 1 — A, 3,(w)

0.3 77 amounts — 168 dB. The coefficients a(m) were evaluated
recursively (Table 1). The coefficients of the impulse response /(1)
of the MF notch FIR filter were evaluated by (21). Because
|h(m)| < 107 for 0 < m < 14 and m > 74, only the 71 central
coefficients of the impulse response /(m) are summarized in Table
2. The amplitude frequency response 20 log | H(e’“")| [dB] of the
MF notch FIR filter is shown in Fig. 3.

8. Conclusions

Novel fast analytical design procedure for the design of maxi-
mally flat notch FIR filters was introduced. The closed form solu-
tion provides recursive evaluation of the impulse response of the
filter. One example demonstrated the efficiency of the design pro-
cedure.
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