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1. Introduction

Engineering models of carrying structures are inevitably based
on idealization of reality. Therefore, various degrees of idealization
will provide different results. Generally, each engineering model
has to consist of three fundamental components coherent to each
other [1, 8]:
● loading (harmonic, periodic, stochastic etc.),
● structural model (geometry, material properties etc.),
● response (displacements, accelerations, stresses, cumulative

damage etc.).

Fig. 1 Engineering models of structures

Uncertainty of each computational component (in loading or
structural parameters) can be characterised by probability theory
or fuzzy sets approach. Generally, uncertainties are often classi-
fied as imprecision, modelling and random [7]:
● imprecision is due to vagueness in a characterizing performance

in terms such as “good” or “unacceptable” 
● modelling uncertainty is due to reality idealization by the modeled

structure and further simplifications in the computational models, 
● random uncertainty reflects variations in the operating envi-

ronment and lack of the designer control. 

Several methods include safety factors, “worst-case scenario”,
probabilistic methods and fuzzy set based methods. This study

focuses only on the treatment by fuzzy uncertainties, using fuzzy
set theory and numerical analysis. 

Fuzzy set based methods use possibility distributions to model
uncertainties and assess safety. The possibility distributions are
estimated using numerical data or expert opinion. In theory, prob-
abilistic methods should be more effective for problems involving
only random uncertainties, because they account for more infor-
mation about these uncertainties than the other methods. However,
to be applied, probabilistic methods may require more informa-
tion than is available. On the other hand, fuzzy techniques require
less data than probabilistic methods [1, 2].

The theory of fuzzy sets was formulated by Zadeh [9]. A fuzzy
set x is the set with boundaries that are not sharply defined.
A function, called membership function (MSF), signifies the degree
to which each member of a domain X belongs to the fuzzy set x
[11]. For a fuzzy variable x � 
x1, x2	, (or x � x), the mem-
bership function is defined as �(x). If �(x) � 1, x is definitely
a member of the x [5, 6, 11]. If �(x) � 0, x is definitely not
a member of the x. For every x with 0 
 �(x) 
 1, the member-
ship is not certain. Typical membership functions of fuzzy sets are
shown in figures 1 and 2.

By fuzzy technique, the complete information about the uncer-
tainties in the model can be included and one can demonstrate
how these uncertainties are processed through the calculation pro-
cedure in MATLAB [1, 2].
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�A(x) �

2. Numerical study of random vibration of a fuzzy
vehicle computational model

Vehicle dynamic models are often characterized by uncertain
system parameters. A main goal of this example will be to analyse
the influence of “uncertain” mass, damping, stiffness parameters
to structural response and the mark of ride quality in a chosen point.
The input will be expressed by a fuzzy random function (fuzzy func-
tion of the behaviour power spectral density).
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Let’s consider a 7-DOFs railway vehicle model (Fig. 4). The
geometry of the model is following: L � 24.5 m, a1 � 12 m, 
a2 � 12.5 m, c1 � c2 � 1 m, coordinates of the point A: xA � 13.5 m,
zA � 1.1 m. The vehicle speed will be v � 80 km/h. Other vehicle
parameters will be:
● mass of the body of coach m1 � 16100 [kg],
● moment of inertia with respect 

to the axis z Jz1 � 787570 [kg.m2],
● moment of inertia with respect 

to the axis x Jx1 � 13700 [kg.m2],
● mass of the bogie m2 � 3050 [kg],
● moment of inertia with respect 

to the axis x Jx2 � 1230 [kg.m2],
● stiffness of primary springing k2 � 360000 [N/m],
● stiffness of secondary springing k1� 200000 [N/m],
● damping coefficient of primary 

springing b2 � 20000 [N.s/m],
● damping coefficient of secondary 

springing b1 � 10000 [N.s/m].

Fig. 2 MSF for a triangular fuzzy number

Fig. 4 Dynamic model of the railway vehicle

Fig. 3 MSF for a trapezoidal fuzzy number
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The following assumptions were employed to derive this model:
● The inputs of the system are two track undulations in the verti-

cal direction.
● The unevenness of the track at the left rail and at the right rail

are presented in Fig. 5 by using the power spectral density [3].
The motion of the wheels is restricted to the vertical direction
only. 

It is assumed that the model is linearized around the operat-
ing state and that the coordinates

y � [y1, �z1 , �x1 , y2 , �x2 , y3 , �x3]T

are measured from the equilibrium state. The equations of motion
will be interpreted as follows

M � y�� � B � y� � K � y � Tb � u � Tk � u. 

Matrices M, B, K, Tb , Tk are presented in Appendix. Fuzzifi-
cation of the structural parameters has been realised by multipli-
cation of matrices M, B, K by the fuzzy number x presented in 
Fig. 6. 

Applying the fundamental principles of correlation theory we
can solve the equations of motion in the frequency domain using
the known input fuzzy power spectral density (Fig. 5) as follows
[4]

Syy(�) � H(i�) � T(i�) � � � �

� TT(�i�) � HT(�i�)

where H(i�) � (��2 � x � M � i � � � x � B � x � K)�1 and 

0
Su2u2(�)

Su1u1(�)
0

T(i�) � (i � � � Tb � Tk) � � �.

The fuzzy PSD function of the vertical motion of the point
A is 

SA(�) � [1  �xA �zA 0   0   0   0] �

� Syy(�) � [1  �xA �zA 0   0   0   0]T

and the mark of ride quality [4] will be 

WA � 3.33 � ��
2
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By using the results, it is possible to study the influence of the
accumulation of uncertain vehicle parameters. For this purpose,
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Fig. 5 Fuzzy PSD of the vertical track irregularities-left and right rail (u1 � uL, u2 � uR), LAM = spatial frequency [l/m]

Fig. 6 Fuzzy number x
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Fig. 7 Fuzzy standard deviation of the vertical displacement of Fig. 8 Fuzzy standard deviation of the vertical velocity of point A

Fig. 9 Fuzzy standard deviation of the vertical acceleration of point Fig. 10 Fuzzy mark of the ride quality of point A

Fig. 11 Fuzzy PSD of the vertical dispavement of point A Fig. 12 Fuzzy PSD of the vertical velocity of point A
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the program CAR_FUZ.M was developed. The aim of the solu-
tion was to analyse the fuzzy standard deviation of the vertical dis-
placement, velocity, acceleration and the mark of ride quality WA
in point A which are presented in Figs. 7, 8, 9 and 10. Figs. 11, 12,
and 13 present the fuzzy power spectral density of the vertical
vibration in point A.

3. Conclusion 

The paper discusses the possibility of fuzzy arithmetic appli-
cation in stochastic structural analysis. The use of fuzzy arithmetic
provides a new possibility of the appraisal of machineries quality.
Due to this numerical approach we can more authentically
analyse mechanical, technological, service and economic proper-
ties of investigated structures.

In this paper, we have investigated the possibilities of stochas-
tic solution for a simple vehicle computational model with fuzzy
structural parameters. We have evaluated power spectral density
and standard deviation of the vertical displacement, velocity and
acceleration in selected point of the carriage (See Fig. 4). The fuzzy
technique enables to appreciate the results in a broader context.

This work has been supported by the VEGA grant No.
1/0280/03.

Fig. 13 Fuzzy PSD of the vertical acceleration of point A
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APPENDIX
The mass matrix M has seven non-zero entries along the main diagonal:

M � .
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The stiffness matrix K is

K � .

The damping matrix B is: 

B � .

and the left side matrices are as follows

Tk � Tb � .
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