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1.  Introduction

The paper presents modeling of combinatorial auctions in
network economy. It is an integration of two characteristic elements
of today’s economic reality, the network economy and auction
mechanisms. The network economy is a term for today’s global
relationship among economic subjects characterized by massive
connectivity. Network industries play a crucial role in modern life.
Today’s network systems provide the infrastructure and founda-
tion for the functioning of societies and economies. Auctions are
important market mechanisms for the allocation of goods and ser-
vices. Auctions are preferred often to other common processes
because they are open, quite fair, easy to understand by partici-
pants, and lead to economically efficient outcomes. Their popular-
ity is also caused by expansion of e-commerce. Design of auctions
(see [7]) is a multidisciplinary effort made of contributions from
economics, operations research, computer science, and other dis-
ciplines.

There is a possible classification of auctions by different aspects: 
1. Traded items (indivisible, divisible, pure commodities, structu-

red commodities).
2. Participants’ roles in auctions (one-sided, multilateral auctions).
3. Objectives of auctions (optimization, allocation rules, pricing

rules). 
4. Complexity of bids (simply, related bids).
5. Organization of auctions (single-round, multi-round, sequential,

parallel, price schemes).

For auctions for selling network capacity it is useful to use so
called combinatorial auctions. Combinatorial auctions refer to
auctions in which participants are allowed to bid on combinations

of items. A classical problem of combinatorial auctions is the
winner determination problem. The problem can be formulated as
an integer programming problem and is well-known to be NP-
hard. In the paper the winner determination problem for selling
network capacities is formulated. The model is based on combina-
torial auctions with a network structure of items. 

2. Network economy

The network economy (see [4], [5], [9]) is a term for today’s
global relationship among economic subjects characterized by
massive connectivity. The central act of the new era is to connect
everything to everything in deep web networks at many levels of
mutually interdependent relations, where resources and activities
are shared, markets are enlarged and costs of risk are reduced.
Connections are enabled by an explosive development of infor-
mation and communication technologies. Network connections
enable tighter relations between firms and stakeholders. New tech-
nologies provide a permanent feedback that enables activity mod-
ifications and quick responses and therefore fundamentally change
business models. Network industries play a crucial role in modern
life. Today’s network systems provide the infrastructure and foun-
dation for the functioning of societies and economies. They come
in many forms and include physical networks such as: transporta-
tion and logistical networks, communication networks, energy net-
works, as well as more abstract networks comprising: economic
and financial networks, environmental networks, social, and knowl-
edge networks. Many important non-network industries share many
essential economic features with network industries. These non-
network industries are characterized by strong complementary
relations.
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The reality of today’s networks includes features: 
● large-scale nature and complexity, 
● increasing congestion, 
● complementarity,
● externalities,
● switching costs,
● alternative behaviors of users of the networks, 
● interactions between the networks themselves.

Many of today’s networks are characterized by both a large-
scale nature and complexity of the network topology. Congestion
is playing an increasing role in not only transportation networks
but also in telecommunication networks. The crucial relationship
in networks is the complementarity between the pieces of the
network. Complementarity turns out to be a crucial factor in the
markets for information goods. Networks exhibit positive exter-
nalities. The value of a unit increases with the expected number of
units to be sold. Costs of switching to a different service or adopt-
ing a new technology are significant. The decisions made by the
users of the networks, in turn, affect not only the users themselves
but others, as well, in terms of profits and costs, timeliness of
deliveries, the quality of the environment, etc. The behavior of the
users of the networks themselves may be non-cooperative. An
example is behavior of users of transport or telecommunication
networks, where optimization from single users’ perspective may not
be optimal from a system one. This situation is illustrated by the
famous Braess’s paradox (see [2]), where an addition of a new link
with identical demand faces the increasing costs for all users. 

Example 1
Braess’s paradox is illustrated by a simple example. The origi-

nal network (Fig. 1) consists of four nodes 1, 2, 3, 4 and four
edges h1, h2, h3, h4, the origin and the destination of the network
are presented by nodes 1 and 4.

There are two paths from the origin to the destination of the
network C1 � {h1, h3} a C2 � {h2, h4}. Let we suppose the costs
on the edges depending on the flow quantities x1, …, x4 are 

n1(x1) � 10 x1, n2(x2) � x2 � 50, n3(x3) � x3 � 50,
n4(x4) � 10 x4

and the total required network flow X � 6.

In the case of user-optimization, the equilibrium solution is
given by the situation, where all paths connecting the origin-desti-
nation pair have equal and minimal costs and therefore no user
has any incentive to switch this path. The equilibrium solution is
given by flows on edges 

x*1 � 3, x*2 � 3, x*3 � 3, x*4 � 3

and by associated path costs 

n(C1) � 83, n(C2) � 83.

A new edge h5 joining node 2 to node 3 with user cost 
n5(x5) � x5 � 10 is added. The change creates new path C3 �
� {h1, h5, h4}. The original solution is no longer in equilibrium.
The new equilibrium solution has the flow of amount 2 for all
three paths. Edge flows are

x*1 � 4, x*2 � 2, x*3 � 2, x*4 � 4, x*5 � 2

and the associated path costs are 

n(C1) � 92, n(C2) � 92, n(C3) � 92.

Costs grow up for every user of the network from the value 83
to the value 92. This cost increase is caused by the fact that edges
h1 and h4 are shared by two paths and the flows and cost are
increasing on these edges. The addition of a path connecting an
origin-destination pair that shares no links with the original con-
nection will never result in Braess’s paradox.

3 Combinatorial auctions

An auction mechanism is denoted as a combinatorial auction,
if combinations of items are traded and not single items only (see
[3], [8]). Combinatorial auctions are increasingly considered as
an alternative to simultaneous single-item auctions. The advantage
of combinatorial auctions is the more precise expression of bidder’s
preferences. This advantage is primarily important in the case of
complementary items. The items are complementary, if the utility
of set of items is greater than a sum of utilities of single items. Two
items A and B are complementary, if it holds 

u({A, B}) � u({A}) � u({B}).

From different types of combinatorial auctions we present an
auction of indivisible items with one seller and several buyers. Let
us suppose that one seller offers a set G of m items, j � 1, 2, …, m,
to n potential buyers. Items are available in single units. A bid made
by buyer i, i � 1, 2, …, n, is defined as 

Ni � {S, pi,S},

where
S ■■ G, is a combination of items,
pi,S is the offered price by buyer i for the combination of items S.

The objective is to maximize the revenue of the seller given
the bids made by buyers. Constraints establish that no single item
is allocated to more than one buyer and that no buyer obtains
more than one combination. The winner determination problem
belongs to NP-hard problems.

Fig. 1 Braess’s paradox
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Notations and variables are introduced for model formulation:
�j,S � 1, if item j ■■ S , �j,S � 0, if item j ■■ S,
xi,S is a bivalent variable specifying if the combination S is assigned

to buyer i (xi,S � 1). 

The winner determination problem can be formulated as
follows

�
n

i�1
�

0

S�G

pi,S xi,S → max

subject to

�
n

i�1
�

0

S�G

�j,S xi,S
■■ 1,  �j ■■ G,

�
0

S�G

xi,S
■■ 1, �i, i � 1, 2, …, n,

xi,S
■■ {0, 1}, �S ■■ G, �i, i � 1, 2, …, n.

For general solving of the winner determination problem,
dynamic programming (see [6]) is proposed. The authors also
consider several restrictions on allowable bids that make the problem
computationally manageable.

4. Auctions on networks

The traded commodities can be network capacities, which
enable various types of flows in network industries. A classical
example is capacity of telecommunication networks where the
capacities of certain links are supplied and demanded. The objec-
tive is the optimal combination of segments in required paths.
Principles of combinatorial auctions are useful for selling network
capacities. The utility of the path capacity is greater than a sum of
utilities of edge capacities.

For illustration we present a basic formulation of the winner
determination problem in a combinatorial auction for selling
network capacities. Let G � (U, H) be a network, where U is a set
of nodes and H a set of edges. To each edge hj

■■ H, j � 1, 2, …, m
a capacity k(hj) is associated. Capacities of the network are owned
by a single seller and there are n buyers, potentially interested in
path capacities. The combinatorial aspect of the problem ensues
from the fact that buyers desire to obtain path capacities (combi-
nations of edges) rather than on individual capacities of edges. We
suppose that buyer i, i � 1, 2, …, n, submits a single bid specified
by the following specifications 

Ni � {Zi , Ki , Gi , ki , pi},

where
Zi , Ki is an origin-destination pair of nodes specifying the path

for buyer i,
Gi is a subgraph of the graph G specifying edges for possible

paths, 
ki is the required capacity for the path,

pi is the offered price of buyer i for the combination.

Other notations and variables are introduced for model for-
mulation:
Ci is the set of all paths between Zi and Ki in the subgraph Gi ,
c is a path from the set Ci ,
�(hj , c) � 1, if hj

■■ c, �(hj , c) � 0, if hj
■■ c,

yc is a variable specifying the capacity on the path c ■■ Ci ,
xi is a bivalent variable specifying if bid Ni is winning (xi � 1). 

The winner determination problem in a combinatorial auction
for selling network capacities can be formulated as follows

�
n

i�1
pi xi → max

subject to

�
0

c�Ci

yc � ki xi , i � 1, 2, …, n,

�
n

i�1 
�

0

c�Ci

�(hj , c) yc
■■ k(hj) , hj

■■ H, 

xi
■■ {0, 1}, i � 1, 2, …, n,

yc
■■ 0, c ■■ Ci , i � 1, 2, …, n.

When paths are specified by buyers and single units of capac-
ity are available on edges as requested by buyer, the model is
equivalent to the model of the winner determination problem, in
which items are edges and combinations are paths. The particu-
larity of the model lies in the fact that buyers do not need to indi-
cate a specific path along which the capacity should be allocated.
It is an auctioneer’s task of routing the requested capacities in
order to determine the winning bids. The model could be solved by
commercial mixed integer programming software. However, the
model can be formulated as a multicommodity flow problem.
Multicommodity network flow problems involve several flow types
or commodities, which simultaneously use the network and are
coupled through edges with limited capacity. Each commodity has
an associated demand and an origin-destination pair of nodes.
Important examples of such problems arise in communication,
transportation, and manufacturing networks. Effective methods can
be used for solving multicommodity network problems (see [1]).
The solution methods for solving the multicommodity flow problem
generally attempt to exploit the network structure of the individual
commodity flow problems. The approaches are based on price-
directive decomposition, resource-directive decomposition, or par-
titioning methods.

Example 2
This simple example is an illustration of terms and notations.

Fig. 2 presents a network with following capacities

k(h1) � 3, k(h2) � 3, k(h3) � 3, k(h4) � 3, k(h5) � 3,
k(h6) � 3, k(h7) � 3, k(h8) � 3, k(h9) � 3.
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Let us suppose three bidders with their bids 

N1 � {Z1 � 1, K1 � 4, G1, k1 � 3, p1 � 10},

N2 � {Z2 � 4, K2 � 7, G2, k2 � 3, p1 � 10},

N3 � {Z3 � 3, K3 � 6, G3, k3 � 3, p3 � 10}.

Subgraphs G1, G2 , G3 specifying edges for possible paths are
shown in Fig. 2. However, for the bid N3 the edge h3 will be never
used. 

There is the optimal solution of the example

x1 � 1, x2 � 1, x3 � 1, �
n

i�1 
pi xi � 30.

The paths are identified for particular bids

C1 � {h1, h3},

C2 � {h6, h9},

C3 � {h4, h5, h7}

or alternatively

C1 � {h1, h3},

C2 � {h5, h8},

C3 � {h4, h6}.

5. Conclusions

Analysis and optimization of network economy functioning
are challenges for application of modeling approaches. Auctions
are important market mechanisms for the allocation of goods and
services. Recently research and applications of combinatorial auc-
tions are significantly increasing. In the paper a basic model for
selling network capacity is formulated. The model is based on com-
binatorial auctions. The advantage for solving this model is a pos-
sibility of utilization algorithms for multicommodity network
problems. This basic model can be extended for other types of
auctions on network structures. Integration of findings from eco-
nomics, operations research and computer science is promising for
interesting results. 

The research project was supported by Grant No. 402/05/0148
from the Grant Agency of the Czech Republic “Network economy
– modeling and analysis.” 

Fig. 2 Selling network capacities
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