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PARTICLES INTERACTIONS IN COMPOSITES REINFORCED
BY FIBRE AND SPHERICAL INCLUSIONS

In our contribution we will show a new Method of Continuous Source Functions (MCSF) to modelling of such problems like composites
reinforced by finite length fibres with a large aspect ratio and composites reinforced by spherical inclusions. The source functions (forces and
dipoles) are continuously distributed along the fibre axis (i. e. outside of the domain, which is the domain of the matrix) and their intensities
are modelled by 1D quadratic elements along the axis in order to satisfy continuity conditions between the matrix and fibre. The spherical
inclusions are modelled by a triple dipole located in the centre of the particle and the intensities of the dipole can be computed using a small

number of collocation points on the particle boundary

Keywords: elastic reinforced composites, meshless method, method of continuous source functions

1. Introduction

Composite materials reinforced by stiff particles or fibres are
important materials possessing excellent mechanical and also
thermal and electro-magnetic properties. Such composites contain
huge number of reinforcing elements with large gradients in all
fields in small parts of the matrix (in micro scale) around the rein-
forcing elements and accurate computational models are important
for homogenization of material properties in macro scale (adjust-
ment of local stiffness of such material) and for evaluation of
material strength.

Mechanical behaviour of composites under loading is extremely
complex and can only be understood if the observed behaviour is
interpreted in terms of micro-mechanical or macro-mechanical
analyses. The fibres can be in form of cylinders or with hemi-
spheres in the tips. The tips cause large gradient in all displacement,
strain and stress fields not only in a close distance to the fibre, but
also in a relatively far distance perpendicular to the axis of the
fibre. It is very important to accurately satisfy the continuity con-
ditions in the tips of the fibre. Correct simulation of these fields is
important for simulation of interaction of fibres and for evaluation
of stiffening effect. Mechanical properties and possible failure modes
of these composites can be predicted early during the design stage
using modelling techniques [1].

A suitable method for solution of the above problems is a multi-
region approach that often leads to inaccurate results, particularly,
when there is a large difference between the material properties of
the matrix and that of the fibre resulting in coefficients in the
system matrix differing by orders of magnitude. However, with
a relatively large number of fibres in a given problem, this type of
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approach is not very feasible because a very large amount of com-
puting resources as well as substantial modelling efforts are neces-
sary. It is well known that using a volume element approximation
such as FEM, hundreds or thousands of elements are necessary to
achieve a required accuracy even for a simple problem.

The classical Eshelby solution [2] was obtained for an elastic
isotropic inclusion in an infinite elastic matrix. The treatment of
the RVE as an infinite space implies that the inclusion concentra-
tion is diluted and, therefore, a direct application of these results
to the case of finite inclusion concentration is only approximate.
An improved model was suggested by Mori and Tanaka [3]. Their
method also assumes the absence of all inhomogenities, but it
includes a certain effect of inhomogeneity by taking an average
strain in the matrix phase when all the inhomogenities are present.
Recently, Sauer [4] solved the elastic field of an idealized, spher-
ical, finite RVE embedded in an infinite, homogeneous, isotropic
medium using Boundary Integral Equations (BIE). A solution is
found which satisfies the continuity of displacements and traction
fields across the RVE/composite interface. However, the model is
simplified and does not take into account the interaction of dis-
cretely distributed particles in the matrix and calculates the Eshelby
tensor from simplified Dirichlet and Neumann boundary condi-
tions.

In our presentation we will use the method of continuous
source functions (MCSF) and will show how the Trefftz Radial
Basis Functions (TRBF), i. e. RBF satisfying the governing equa-
tions (which can be the fundamental solutions, or more general
functions, dipoles, dislocations, etc.) can be used to increase the
efficiency of simulations. The most efficient methods will be those
which will best approximate both domain variables and boundary
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conditions. The TRBF are source functions having their source
points outside the domain. Special attention will be given to the
application of the TRBF in the form of dipoles to the simulation
of composites reinforced by particles and/or short fibres.

Compared to the Method of Fundamental Solutions (MFS)
[5, 6] which does not require any integration, the MCSF requires
an integration along 1D and 2D element. The integrals are quasi-
singular and quasi-hyper-singular and the numerical integration is
computationally cumbersome and inefficient. The analytic inte-
gration using a symbolic manipulation is a very efficient tool used
in the models. A relatively small number (usually fewer than 10)
of elements in a fibre is necessary to obtain a good accuracy also
by a large aspect ratio (e.g. 1:100).

The proposed method is not fully meshless for these particular
models as it requires 1D elements outside the 3D matrix domain,
however, the model presents a significant reduction (even by several
orders) of the resulting system of equations comparing to FEM,
BEM, or other known meshless methods and can be qualified as
a Mesh Reducing Method (MRM).

2. Solution method

The boundary integral equation for analysis of elastic domain
containing rigid inclusions is used

K (e x) fle)dx, = g(x) ()

where K is the kernel function for force intensity or dipole inten-
sity along the fibre, g is a boundary condition on the fibre surface.
A lower index s denotes the source point where force is acting and
f'is the field point where the displacement is introduced. Kernel
function is represented by kernel functions for displacement and
traction components in the fundamental solution (Kelvin ‘s solu-
tion) respectively, which can be found in Appendix A. For fibre
reinforced composites the source functions (forces and dipoles)
are continuously distributed along the fibre axis (i. e. outside of
the domain which is the domain of the matrix) and their intensi-
ties are modelled by 1D quadratic elements along the axis in order
to satisfy continuity conditions between the matrix and fibre.
A 2D distribution of source functions is selected in the parts of
the fibres where large gradients appear.

The RBF can be used also for simulation of the interaction
between the matrix and particles with a very large aspect ratio such
as composites reinforced with short fibres where the aspect ratio
can be 1000:1 or even larger. The inter-domain boundary condi-
tions can be simulated by 1D distribution of the TRBF's (source
functions) along the fibre axis. When the TRBF's are approximated
by polynomials then the problems lead to evaluation of the fol-
lowing integrals

x"(x, — x,)
b(—f)hdxs = flx) )
a (yz +xv 7x§»)1 -

where x is the coordinate along the fibre axis, the subscripts s and
f denote the source and field point and exponents are integer
numbers and y is the distance of the field point from the source
point. For computational purpose the integral (2) is transformed
to
o (2 — x ) x”
L fx) 3)
atx <yz + xz);ﬁ

The numerical integration of such integrals would be compu-
tationally very laborious because of the quasi-singularities and
quasi-hyper-singularities in the integrals; however, analytic evalua-
tion of the integrals containing the kernel function and polyno-
mial approximation of the unknown function is a very elegant way
of numerical evaluation of the integrals, if the axis of the fibre is
straight, i.e. the value of y is constant in the integrals above.

If the ideas of the TRBF and MFS are used then a simple and
efficient formulation can be developed. In the case of composite
material reinforced by spheres or particles with an aspect ratio not
very different from 1, a particle can be modelled by a triple dipole
located in the centre of the particle and the intensities of the
dipole can be computed by using a small number of collocation
points on the particle boundary (Fig.1). The method of discrete
dipoles is very simple and details can be found in [7].

collocation points

Fig. 1. Spherical inclusion and collocation points

Because of the large aspect ratio, continuity of strains between
a matrix and a fibre can be simulated by continuously distributed

fiber
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Fig.2 Continuous force/dipole model for the fibre reinforcing element
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source functions (forces, dipoles, dislocations, etc. [8, 9] as they
are known from the potential theory) along the fibre axis (Fig. 2).
The continuous source functions enable to simulate the continu-
ity conditions with much reduced collocation points along the
fibre boundary.

3. Some Applications and Results

Example 1: Short- Fibre-Reinforced Composites

First example simulates the interaction of fibres with the matrix
and also the interaction of fibres: 1) a patch of non-overlaying
rows of fibres as shown in Fig. 3 on the left and 2) a patch of over-
laying rows of fibres according to Fig. 3 on the right. In the exam-
ples the modulus of elasticity of the matrix was £ = 1000 and
Poisson ratio v = 0.3. The matrix was reinforced by a patch of
straight rigid cylindrical fibres. The length of fibres was L = 100
and L = 1000 and the radius R = 1. The distance between fibres
was Al = A2 = A3 = 16 and for longer fibres also A3 = 200 in
the fibre direction. The fibres in the patch contain approximately
1 % of the volume of the composite material. The domain is sup-
posed to be loaded by far field stress 053, = 10 in the direction
(x3), which is also parallel to fibres’ axes. The model of the fibre
used in these examples contained fewer than 100 unknown para-
meters (intensities of the source functions) and about 200 collo-
cation points. The problem is solved by the least square (LS)
method. The variation of forces for longer fibres is given in Fig. 4.
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Fig. 3. 3D patches of regularly distributed fibres
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Fig. 4. Forces in fibre cross section with overlap red and black and
without overlap cyan and blue by different gap between fibres in
longitudinal direction
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As the fibres are long and thin, they are much stiffer in the
axial direction than in bending and the satisfaction of continuity
of displacements, strains and tractions on the surface between the
matrix and fibres and corresponding displacements and strains
along the fibre would require a very large number of TRBF (source
points) to simulate the interaction.

Moreover, in the end parts of a fibre the fields have very large
gradients, which increases the difficulties with accuracy and numer-
ical stability of the solution. In our models a continuous distribu-
tion of the source points is used for simulation of the interaction.
It is possible to use both distributed forces and distributed dipoles
along the fibre axis (1D distribution) and oriented in the axis
direction in the model. Their role is mainly to satisfy continuity in
the fibre axis direction. Continuity in directions perpendicular to
the fibre axis is served mainly by the continuous dipoles along the
fibre axis, but directed perpendicularly to the fibre axis. Recall that
continuously distributed dipoles are derivatives of continuously
distributed forces. The distribution is approximated by piecewise
quadratic functions with c° continuity between the elements. More
about the model can be found in [10].

The forces in the fibres are much greater if the fibres overlap
then in the fibres without the overlap (Fig. 4) and thus the stiff-
ening effect is considerably influenced by the overlapping. The
forces can lead to axial stresses which can exceed the stresses in
the matrix by several orders and can cause fracture of the fibres in
tension or loss of stability in compression.

Extreme shear forces between the fibre and the matrix can
lead to de-bonding of the fibre or to de-cohesion and re-cohesion
at the ends and also in the middle of a fibre close to another fibre
in materials reinforced with nanotubes, which are typical and very
efficient novel reinforcing materials. Note that the large gradients
in shear stresses arise not only at the ends of fibres but also in the
parts perpendicular to the ends of neighbour fibres and the models
are very sensitive to 1D distribution functions along the fibre axis
and can cause numerical errors [11].

Example 2: A Rigid Sphere in Elastic Medium

In this example composite material is reinforced by spheres
or particles with an aspect ratio not very different from 1. The par-
ticle is modelled by a triple dipole located in the centre of the par-
ticle and the intensities of the dipole can be computed by using
a small number of collocation points on the particle boundary.
The interaction of 2 particles modelled by two triple dipoles in
their centres and using only 6 collocation points on the particle
boundaries in an eigenstrain field is shown in the next figures.
Deformation, radial and tangential components of tractions are
given as computed from the simplified models for radius of smaller
particle equal to one fifth of the radius of a larger one and with the
distance between particles equal to one fifth of the radius of the
smaller particle (Figs. 5a- d). The undeformed form of particles is
red and the green and blue are corresponding fields for a corre-
sponding particle. Intensity of tractions is given by radial distance
of the corresponding circle from the undeformed form. Recall
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a) deformation of particles - detail

b) radial tractions

c) tangential tractions h) deformations of particles - (detail)

Fig. 5. Interaction of two different size inclusions

that for the deformed form of a spherical particle in the eigenstrain
[12] only local parts of deformation and tractions are shown in
the figures, i.e. if the particle is rigid the local deformation of
sphere should follow the blue lines in the corresponding Figs. 5.
The traction components are shown in different scales and tan-
gential components are much smaller than radial ones. It can be
seen that the simple models are sufficient for the problems when
the size of particles is not very different and particles are not very
close to each other. Refined models are required for small parts of
models. However, this simple model can be used for iterative
improvements of solution with very fast convergence in iterative
steps for each very stiff or elastic inclusions. Additional interpo-
lation functions are included in the iterative steps.

4. Conclusion

TRBF are shown to be very efficient interpolation functions,
which satisfy governing equations inside the domain but they can
also satisfy boundary conditions in some part of the domain bound-
ary. The TRBF can be introduced by the fundamental solution
(unit force acting on infinite continuum), its derivatives (dipoles,
couples, dislocations) in mechanics, thermal, or other source func-
tions in other field problems. The TRBF correctly simulate the
decay of field variables and so they can efficiently model any con-
centrators in field variables. They can be also source functions
acting in other domains (Boussinesq-Cerutti solution for half space
which can be used for effective modeling of effect of local loading
[13, 14], analytic solution for layered structures, etc.).

It is demonstrated that the TRBF can be used in connection
with boundary collocation methods to simulate a microstructure
reinforced by particles using ideas similar to MFS with only single
triple dipoles located into centres of the particles to simulate the
interaction of particles with matrix and with other particles, as well.
No meshing and no integration are necessary. The ideas of Fast
Multipole Method (FMM) are also possible to formulate using

mechanical principles instead of Taylor series expansions by the
formulations. The far field interaction is then introduced by result-
ing dipole taking into account the force and moment equilibrium.

For simulation of a microstructure reinforced with short fibres
1D continuous distribution (it is the TRBF, too) of source func-
tions was developed by the authors. It can reduce the model com-
paring to other numerical models by many orders. The forces or
dipoles can be used for simulation of interdomain continuity in
a fibre axis direction and continuous dipoles in perpendicular direc-
tions. The models can be further augmented to simulate compos-
ites reinforced by imperfect or curved fibres by using a continuous
distribution of couples along the fibre axis in order to keep the
moment equilibrium of the fibre reinforcing effect. In this way the
fibres with a large aspect ratio like carbon nanotubes (CNT) which
are very stiff in the fibre axis direction, but much more flexible in
bending can be correctly simulated for interaction with the matrix
and with other fibres, too. The examples show how important the
correct simulation of all interactions is for a global behaviour
assessment.

Numerical models can take into account different topologies
(size and distribution of particles) of composite, different materi-
als of each particle and can be a part of multiscale computational
models. The reinforcing particles can be on the surface only and
they can form surface layers. From the computational point of view
the models can define the Functionally Graded Material (FGM)
from microstructural changes of material properties in the surface
layer.

The paper presents the MCSF for composite materials rein-
forced by stiff fibres. For modelling the interactions by MCFS we
used functions dipoles as a source. The boundary conditions on
the stiff parts can be defined in the form of rigid body displace-
ments and by strains. Different source functions define different
relations between the components of deformation and stress and
thus the satisfaction of all boundary conditions is decisive. In some
situations different source functions can contribute to a better
numerical stability. The source functions are quasi-singular along
the fibre boundary. The analytic evaluation of integrals is simple
also for a higher order polynomial approximation of the intensi-
ties of the source functions.
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Appendix A

This appendix provides the details of kernel functions used in

the presented MCSF formulation. The field of displacements in

an elastic continuum by a unit force acting in the direction of the
axis x, is given by Kelvin solution

" — 1 1

i *[(3 - 4V)6ip + rirp]

A.l
167G0 — )T S

16 ¢ COMMUNICATIONS 2/2009



where 7 denotes the x; coordinate of the displacement, G and v are
shear modulus and Poisson’s ratio of the material of the matrix
(isotropic material is considered here), r is the distance between
the source point s where the force is acting with a field point t
where the displacement is introduced, i. e.

r=yrn, n=x(1)—x(s) (A2)

The summation convention over repeated indices acts and

r. = orlox(t) = rlr (A.3)
is the directional derivative of radius vector r. The gradients of dis-
placement fields are corresponding derivatives of the field (1) in
the point ¢

U(F) [

pij

1
167G1 — v)r?
+ 3r.rr)

(G —4v)d,r,—d,r,—

piti

(A4)
— b,
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Note that the second derivative of the radius vector of n-th

power is
ny
(), = 7(r_"k "By — 1,1 (A5)
The strains are
1 1 1
E(ﬁ) — 1 U“? + U(F)i — _ .
v 2( o+ U3 167G —v)r’ (A.6)
{0 = 2@, + 8,r) = 8,1, + 3111
and the jj stress components of this field are
St} = 2GE} + 225 e = —
1—2v 8l —v) (A7)
1 .
?[(1 —2v)(,r, — 8,1 — O,1y) + 3r,rjrp]

where d; is the Kronecker’s delta.

The displacement field of a dipole can be obtained from the
displacement field of a force by differentiating it in the direction
of the acting force, i.e.

1 1
162G —v) r*
-['j‘r_,n2 —r,+ 20 — )15,

P pYip

U(Q) — U(FJ =
pi

pip

(A8)

The summation convention does not act over the repeated
indices p here and in the following relations, too. Gradients of the
displacement field are
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The displacements (A.1) by a force are weak singular, the dis-
placement gradients, strains and stresses are strong singular. The
fields defined by a dipole have one order higher singularity (strong
singularity in the displacement field and hyper-singularities in the
strain and stress fields). The derivatives in the perpendicular direc-
tion to the force define the force couple. The displacement field
for the couple is

U =y = 1 i
' "o1enGU — )t (A.12)
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and the corresponding strain and stress fields are
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