
15C O M M U N I C A T I O N S 3 / 2 0 0 9 �

1. Introduction

Recently, there are still many scientific problems unsolved.
One of the areas with many challenging problems is graph theory.
Challenge lies in the speed of the used algorithms. Many of them
are proven to be NP-complete. For practical usage any possibility
of speed-up is appreciated [1], [2].

A lot of problems solved by graph theory can be characterized
as combinatorial problems. To solve them, combinatorial search
algorithm is quite commonly applied. It can be described as
a process of searching a finite mathematical structure (usually set)
for a solution satisfying given criteria [3].

To define combinatorial search algorithms, let us consider
a discrete set X, a function F: X → � , and a set of feasible solu-
tions S, where S � X. The feasible solution is defined in terms of
given constraints specific for a particular problem. Generally com-
binatorial search algorithms can be divided into two sets.

The first is the set of optimization algorithms [4]. The goal of
these algorithms is to find the feasible solution x � S such that its
value of function F is extreme. To accomplish this task, the set S
must be constructed, evaluating all the elements of the set X and
checking given constrains. Simultaneously while constructing the
set S, values of the function F are calculated for all its elements.
Then the element with an extreme (e.g. either minimal or maximal,
depending on the character of the problem) value of the function
F is the solution of the problem.

The second is the set of solution finding problems [4]. The
task is again to iterate through the elements of set X, but in this
case the goal is to find at least one element of the set S. In other
words, we are looking for an element x � X � x � S.

For many practical problems the set X is large, which leads to
long execution times of programs solving these problems. To reduce
the execution times, many approaches were proposed and imple-
mented. Recently parallelization of the task is a common technique
to be applied [5].

2. Distributed Backtracking algorithm

While designing the algorithm to solve a combinatorial search
problem, a backtracking approach can be used [6]. It is based on
the sequential construction of the elements of the set X and eval-
uation of their feasibility. During this process the elements which
are identified as not to produce a feasible solution are pruned.
This can significantly reduce the computational time.

To formalize the backtracking approach, let us consider n
sets:

, (1)

where mk is a number of elements of the set Ek and ei
k is i-th

element of the set Ek. Then the above mentioned set X is defined
as Cartesian product of the sets Ei , �i:

, (2)

with cardinality . It is obvious that the set X consist of
n-tuples:

, (3)

such that xj
c � Ei . These n-tuples are constructed recursively extend-

ing the set of (n � 1)-tuples.

, , , , ,,x x x c Q1 2c c
n
c

1 2 f f=_ i

Q mi
i

n

1

=
=

%

X E E E2 n1# # #g=

, , ,,E e e e k n1k k
m
k

1 2 k
f f= =k # -

PARALLEL BACKTRACKING ALGORITHM
FOR HAMILTONIAN PATH SEARCH
PARALLEL BACKTRACKING ALGORITHM
FOR HAMILTONIAN PATH SEARCH

Karol Grondzak – Penka Martincova *

The speed of calculations is a common problem to tackle in many areas of scientific research and real life. This paper presents an imple-
mentation of a parallel backtracking algorithm. The performance of the proposed algorithm is demonstrated on the problem of Hamiltonian
Path search. Obtained results exhibit significant improvement of the parallel algorithm over the sequential one. Different aspects of paral-
lelization of backtracking algorithm are studied and presented.

* Karol Grondzak, Penka Martincova
Department of Informatics, Faculty of Management Science and Informatics, University of Zilina, Slovakia, E-mail: Karol.Grondzak@fri.uniza.sk

https://doi.org/10.26552/com.C.2009.3.15-19

16 � C O M M U N I C A T I O N S 3 / 2 0 0 9

The backtracking algorithm starts with an empty n-tuple. In
the stage i the (i � 1)-tuple is extended using elements of the set
Ei . Newly obtained i-tuples are then checked for feasibility and
then expanded to (i
 1)-tuples to form the set Ei
 1.

This process is actually a depth-first search of a search-tree.
Nodes of the search tree at i-th level consist of i-tuples. An example
of the search-tree is in Fig. 1.

It is obvious, that just described the backtracking algorithm is
suitable for distributed processing. One strategy to distribute tasks
among processors could be as follows. Let us construct all i–tuples
for some small value of i, chosen to correspond the amount of avail-
able processors. Then assign those i-tuples to processors, such that
each processor will perform depth-first search of a sub-tree of the
search tree starting from a given i-tuple.

The properties of the search-tree and the strategy of search
can significantly influence the performance of the backtracking
algorithm [7]. When constructing the backtracking algorithm, we
do not have usually any a priori information about the structure
of the search-tree.

In any stage of the backtracking algorithm, we perform depth-
first search of some sub-tree. If there was a solution found in the
searched sub-tree, the algorithm finishes. If not, then the backtrack-
ing algorithm has to choose another sub-tree to search.

To formalize the properties of a search-tree from the point of
view of the backtracking algorithm, let us denote depth of the sub-
tree:

, (4)

where n is the number of sets used to construct n-tuples and mk is
the number of elements in the set k. Depth of a sub-tree is a func-
tion of search strategy and represents a number of n-tuples to con-
struct and process during depth-first search of that sub-tree.

3. Hamiltonian Path and Circle

One of the well-known problems of graph theory is the problem
of finding a path on a graph which visits each of the nodes exactly

, , , ; , ,D D k n i m1 2 1 2i
k

l
k

l

m

k
1

1

k

f f= = =+

=

/

once. If the starting and final nodes are different, the problem is
known as the Hamiltonian Path problem [6]. Special case when
starting and final nodes are identical is known as the Hamiltonian
Circle problem.

It is known that both the Hamiltonian Path and Hamiltonian
Circle are NP-complete problems. We can characterize them as deci-
sion problems – for a given graph the goal is to determine if the
Hamiltonian Path or Circle exists.

Among many problems of the Hamiltonian Circle problem let
us mention a well-known Knight’s Tour problem. The goal is to find
a path of knight on a chessboard of a standard dimension N � 8,
such that will visit all the squares, each exactly once. This problem
can be generalized to chessboards of any dimension.

3.1 Distributed Hamiltonian Path Search Algorithm

As mentioned above, the Hamiltonian Path problem is a deci-
sion problem. The backtracking combinatorial search algorithm can
be applied to solve it. The problem is, that even for a relatively small
dimension of the graph, the size of the n-tuples to be searched is
huge. Let us consider the problem of Knight’s Tour problem for
a chessboard of 64 squares. First let us number the squares of the
chessboard starting form 1 to 64. Our goal is to construct a n-tuple
containing a number of squares visited during the tour. On each of
the squares, the knight has at most eight possible ways to move.
So there are 864 tuples to be searched. This is a rough estimation
and many of these tuples can be pruned during the depth-first
search of the search-tree. But still there are many of tuples to be
checked. There is too much work for a single processor.

To improve the performance of the backtracking algorithm for
search of the Hamiltonian path, several processors can be involved.
We can expect linear increase of the performance, but for some
situations even super-linear increase was reported [7]. It depends
on the properties of the search-tree of the solved problem.

Parallelization is quite straightforward, because of the nature of
the search-tree. On each level of the search tree, there are nodes to
be searched. Let us denote a number of nodes on each level as

, (5)Q mi k
k

i

1=

=%

Fig. 1 Example of a search tree

Fig. 2 Pseudo-code of master (a) and worker (b) processes

17C O M M U N I C A T I O N S 3 / 2 0 0 9 �

where mk is the number of elements of the set Ek . The nodes form
a set of disjunctive sub-trees. These sub-trees can be assigned to at
most Qi processors to perform parallel search on them.

For a given amount of P processors it is reasonable to deter-
mine a level of the tree to start parallel search such that:

. (6)

Then the maximum amount of processors is involved in search.
In fact, when P � Qi , all the processors will search exactly one
sub-tree. In other cases some of the processors will search several
sub-trees. This situation can lead to better load-balancing compar-
ing the case when P � Qi , because usually the sub-trees are of dif-
ferent depth. Then if all the sub-trees are assigned at the beginning
of the algorithm, those processors which finish their task are sitting
idle waiting for those processors, whose sub-trees are deeper and
require more time to finish the search.

4. Experiment and obtained results

To test the proposed distributed algorithm, we have modeled
the following routing problem. Let us consider a regular rectangu-
lar mesh of cells of the dimension N. In this mesh, we have to find
a route from a given start point to a given finish point such that
each of the cells will be visited exactly once. This problem can be
described in terms of graph theory as a problem of finding a Hamil-
tonian path in a graph of a special regular form (Fig. 3).

This problem can represent a task to route some small main-
tenance vehicle (e.g. robot) on a set of office cubicles to perform
daily routine tasks (e.g. cleaning, etc.). It can also model the route
of some machine in a factory to perform a prescribed operation in
different parts of some product, e.g. to drill holes, etc. Once the
route is found, it can be embedded into a device, which will then
use this fixed route regularly. Or in case when the layout is subject
to change, the algorithm can be implemented in the device. When
the situation changes, the device will apply the algorithm to find
a new route corresponding the actual situation.

Qi i1- P Q1 1=

The algorithm mentioned in section 3, was implemented using
OPENMPI Project [8], [9]. It is freely-available, high performance
implementation of Message Passing Interface (MPI) standard. MPI
is a standard for communication and synchronization of distrib-
uted entities. It was proposed by a consortium of companies for high
performance on both massively parallel machines and on worksta-
tion clusters.

The presented results were obtained on a commodity work-
station cluster. The cluster consists of twenty personal computers
equipped with a processor Intel Core 2 Duo and 1024MB of RAM
memory. Computers are interconnected by 100Mb/s local area
network. The connection is sufficient because of the small com-
munication requirements of the application.

The performance was studied for problems of the dimension
N � 6. The obtained results are summarized in the form of tables.
Each table presents data for different study. Data in each table
represent amount of iterations necessary to find a solution. This
representation was preferred to the time measurement because it
represents the performance of the algorithm and is not influenced
by the actual load of processors. It corresponds to the depth of the
search tree when considering the starting level 0, as it was defined
above (4).

Three different characteristics of the problem were studied.
First, we studied the influence of the chosen depth-first search strat-
egy to the performance of the algorithm. When solving backtrack-
ing problems, the strategy of the next step choice is embedded in
the code. It is obvious that for the solved problem there are at
most four different directions to continue from a given position.
Let us denote those directions L(eft), R(ight), U(p) and D(own).
So there are 24 different strategies to choose from, considering
a different order of directions (e.g. LURD is one strategy, ULDR
is another). Because of some symmetry of the solved problem, the
obtained results are same for couples of strategies. This is the
reason, why there are only 12 results presented, other 12 results are
the same (row Direction in Table 1). When comparing results for
different strategies it can be seen that the choice of strategy has
significant impact on the performance (Table 1, Table 2 Table 3).
For some strategies the number of iterations is significantly smaller
than for other ones. There is no a-priori information about the
behavior of the strategies, so usually when designing the backtrack-
ing algorithm, we randomly choose one of the available strategies.

Secondly, we studied the performance improvement with
respect to the number of processors involved in calculation. It can
be seen (Fig. 4) that the obtained results are highly non-linear.
This figure shows the number of iterations needed to find the solu-
tion of the problem. The smaller number of iterations means the
better performance. The results are presented for strategy number
4 (DULR). It indicates that the search tree is unbalanced. It is also
indicating that a better load-balancing strategy should be applied to
distribute load among the nodes.

Third, the study assessed the influence of the depth at which
the search starts. It can be seen that the number of iterations neededFig. 3 Example of graph representation of solved problem

18 � C O M M U N I C A T I O N S 3 / 2 0 0 9

to find a solution is either the same (strategies 0, 1 and 5) for all
the starting depths, or is improving with the increasing starting
depth (strategies 3, 4, 12, 13, 14,16 and 17). For the rest of strate-
gies (2 and 15) the number of iterations to find solution has
increased for level 3. It could be caused by the fact, that only 38
processors were involved in the calculation instead of 64, which is
the number of sub-trees in level 3. When using at least 64 proces-
sors, we would expect to get either the same or better results for
strategies 2 and 15.

Fig. 4 demonstrates also the influence of the depth at which
the search starts to the performance of the algorithm. This graph
presents the dependence of the number of iterations needed to
find a solution with respect to the number of processors for dif-
ferent starting depths. It demonstrates that when the start depth is
increasing, the number of iterations decreases (depth 1 curve versus
depth 3 curve).

The smaller the number of iterations, the better performance
of the algorithm

5. Conclusion and Future Work

Parallel paradigm is recently a very popular approach for solving
time-consuming scientific problems. It is widely adopted in many
scientific areas starting from scientific calculations, through mod-
eling [10] up to computational biology [11].

In this paper, the study of the parallelization of the backtrack-
ing algorithm was presented. The general parallel backtracking
algorithm was proposed and implemented using MPI implemen-
tation OPENMPI. It was tested on the problem of Hamiltonian
path search.

The obtained results are in accordance with our expectation
[12]. This study helped the authors to better understand the prop-
erties of the parallel backtracking algorithm.

Strategy 0 1 2 3 4 5 12 13 14 15 16 17

Direction DLRU DLUR DRLU DRUL DURL DULR RLDU RLUD RDLU RDUL RUDL RULD

Sequential 240 821958 9638 4353 101981 2515876 908134 138265 264258 8476 204707 6597

Parallel 240 204 2018 3486 19481 915 24285 138265 24321 858 81255 6597

Speedup 1 4029.2 4.8 1.2 5.2 2750.0 37.4 1.0 10.9 9.9 2.5 1.0

Number of iterations and relative speed-up for different strategies for search started in level 1. Table 1
Number of processors involved for parallel search is 5

Strategy 0 1 2 3 4 5 12 13 14 15 16 17

Sequential 240 821958 9638 4353 101981 2515876 908134 138265 264258 8476 204707 6597

Parallel 240 204 2018 3486 19481 915 1136 457 1108 616 559 457

Speedup 1 4029.2 4.8 1.2 5.2 2750 799.4 302.5 238.5 13.8 366.2 14.4

Number of iterations and relative speed-up for different strategies for search started in level 2. Table 2
Number of processors involved for parallel search is 17

Strategy 0 1 2 3 4 5 12 13 14 15 16 17

Sequential 240 821958 9638 4353 101981 2515876 908134 138265 264258 8476 204707 6597

Parallel 240 204 3488 1350 409 915 1136 457 1108 858 559 457

Speedup 1 4029.2 2.8 3.2 249.3 2750 799.4 302.5 238.5 9.9 366.2 14.4

Number of iterations and relative speed-up for different strategies for search started in level 3. Table 3
Number of processors involved for parallel search is 38

Fig. 4 Number of processors versus number of iterations
needed to find solution.

19C O M M U N I C A T I O N S 3 / 2 0 0 9 �

We can expect that the performance can be improved by involv-
ing more processors into calculation. The obtained results also
indicate that the better load balance is achieved when the search
starts deeper in the search tree.

The future work will be to modify the algorithm for grid envi-
ronment. The potential for improving the performance of algorithm
is in grid technologies. Study of different load-balancing techniques
to the performance of the backtracking algorithm will also be per-
formed.

Acknowledgement: The authors would like to thank Dr. Michal
Kaukic for the opportunity to use the laboratory of parallel appli-
cations. This work was partially supported by VEGA Grant No.
1/0761/08 “Design of Microwave Methods for Materials Nonde-
structive Testing” and VEGA Grant No. 1/0796/08 “Large Data
Modeling and Processing”.

References

[1] GENDRON, B., CRAINIC, T. G.: Parallel Branch and Bound Algorithms: Survey and Synthesis, Operations Research, 42, pp. 1042–
1066, 1994.

[2] CRAINIC, T. G., LE CUN, B., ROUCAIROL, C.: Parallel Branch-and-Bound Algorithms, Wiley Interscience, October 2006, ch. 1.
[3] MEZMAZ, M., MELAB, N., TALBI, E-G.: A Grid-enabled Branch and Bound Algorithm for Solving Challenging Combinatorial Opti-

mization Problems, In Proc. of 21st IEEE Intl. Parallel and Distributed Processing Symp., Long Beach, California, 2007.
[4] QUINN, M. J.: Parallel Programming in C with MPI and OpenMP. Mc Graw Hill, 2003. ISBN 007-123265-6.
[5] WILKINSON, B., ALLEN, M.: Parallel Programming Second Edition. Pearson Education, 2005. ISBN: 0-13-140563-2.
[6] KUCERA, L.: Combinatorial algorithms (in Slovak), SNTL, 1989.
[7] NAGESHWARA RAO, V., KUMAR, V.: On the Efficiency of Parallel Backtracking, IEEE Trans. Parallel Distrib. Syst. 4(4): 427–

437 (1993).
[8] http://www.open-mpi.org/
[9] GROPP, W., LUSK, E., SKJELLUM, A.: Using MPI, Second Edition. The MIT Press, 1999. ISBN: 978-0-262-57134-0.
[10] KVASNICA, I., KVASNICA, P., IGAZOVA, M.: Parallel Modeling in Computer Systems, Acta Avionica, Vol. X, 2008, 16. ISSN

1335-9479, pp. 8–86.
[11] SCHMIDT, M. C., SAMATOVA, N. F., THOMAS K, PARK, B. H.: A scalable, parallel algorithm for maximal clique enumeration,

J. Parallel Distrib. Comput. 69 (2009), pp. 417–428.
[12] GRONDZAK, K., MARTINCOVA, P., CHOCHLIK, M.: Performance Analysis of Parallel Algorithm for Backtracking, Proc. of 4th

International Workshop on Grid Computing for Complex Problems, Bratislava, 2008.

