
38 � C O M M U N I C A T I O N S 4 / 2 0 0 9

1. Introduction

Vehicle routing problem (VRP) is a classical problem in oper-
ations research. It consists in delivery routes optimization in com-
munications network containing depot of all routes and a given
number of cities, which is necessary to include in delivery routes.
In VRP a set of customers needs to be served and a fleet of capac-
itated vehicles is available to do so. The objective is the minimiza-
tion of costs, which usually means minimizing the total distance
traveled. In most VRPs it is assumed that the demand of a customer
is given and is less than or equal to the capacity of a vehicle and
that each customer has to be served by exactly one vehicle, i.e.,
there is a single-visit assumption. The condition is that the sum of
demands of the cities on the route should be less than or equal to
the capacity of vehicle. The vehicle capacity is the limitary factor
in this problem.

It is obvious that when a customer’s demand exceeds the vehicle
capacity it is necessary to visit that customer more than once.
Even when all customer demands are less than or equal to the
vehicle capacity, it may be beneficial to use more than one vehicle
to serve a customer. In the split delivery vehicle routing problem
(SDVRP) the single-visit assumption is relaxed and each customer
may be served by more than one vehicle.

The SDVRP is, similarly like the traveling salesman problem
(which is reduced on this vehicle routing problem in the case of
big enough capacity of a vehicle V), an NP hard problem.

Let us set the mathematical model SDVRP, which is based on
Miller-Tucker-Zemlin formulation of the traveling salesman problem.

The binary variable xk
ij equals 1, if the edge (i,j) is included in

the solution, so it means that the vehicle goes from the city i to the
city j, otherwise this variable’s value is equal to zero. Each cus-
tomer has a demand qi , which can be less than, equal, or greater
than the vehicle capacity V. The variable qk

i represents the quantity
delivered to the i-th customer on k-th the route.

The distance between the cities i and j is cij . Each vehicle has
capacity V and has to start and finish its tour at the depot. A cus-
tomer may be visited more than once.

The objective function (1) represents the sum of all edges dis-
tances in the solution, hence the sum of all routes length of the
solution. The equation (2) assures that the k-th route leaves the
depot just once. The equation (3) assures that only one edge comes
out from city i on the k-th route. Similarly, the (4) sets that number
of edges coming from the city j on the k-th route is the same as
number of edges coming into the city (0 or 1). The equations (3)
and (4) are not applied on the city 1, because from and into the
city 1 there are as many edges as many routes there are. The
inequality (5) defines variable ui , which represents the demand on
the route k from the city 1 to the city i. This condition also has the
anti-cycling effect – it prevents creating the sub-cycles in the solu-
tion. The condition (7) means that demand on the route k does
not exceed the vehicle capacity V. Constraints (8) ensure that the
demand qi of customer i is completely satisfied. Constraints (9)
impose that a delivery to a customer i on route k can only take
place if route k is selected and the total quantity delivered on
a selected route cannot exceed the vehicle capacity V.

The SDVRP model is (1)–(11):

ANT COLONY OPTIMIZATION METHOD AND SPLIT-DELIVERY
VEHICLE ROUTING PROBLEM
ANT COLONY OPTIMIZATION METHOD AND SPLIT-DELIVERY
VEHICLE ROUTING PROBLEM

Andrej Chu *

This paper deals with a split delivery vehicle routing problem, which is a modification of a vehicle routing problem. It consists in delivery
routes optimization in communications network containing initial city of all routes and a given number of places, which is necessary to include
in delivery routes, where a customer can be served by more than one vehicle. The objective is to find a set of vehicle routes that serve all the
customers and the total distance traveled is minimized. The split delivery vehicle routing problem is NP hard, therefore we present a solution
approach by three heuristics, and a metaheuristics called Ant colony optimization (ACO).

Keywords: split delivery vehicle routing problem, integer programming, ant colony optimization, metaheuristics

* Andrej Chu
Faculty of Informatics and Statistics, University of Economics, Czech Republic, E-mail: andrej.chu@vse.cz

https://doi.org/10.26552/com.C.2009.4.38-42

39C O M M U N I C A T I O N S 4 / 2 0 0 9 �

(1)

, k � 1, 2, …, K (2)

, i � 2, …, n; k � 1, 2, …, K (3)

, j � 2, 3, …, n; k � 1, 2, …, K (4)

, i � 1, 2, …, n;

j � 2, 3, …, n; i
 j; k � 1, 2, …, K (5)

uk
1 � 0, k � 1, 2, …, K (6)

qk
i � uk

i � V, i � 2, 3, …, n; k � 1, 2, …, K (7)

, i � 2, 3, …, n (8)

, i � 2, 3, …, n; k � 1, 2, …, K (9)

xk
ii � 0, i � 1, 2, …, n; k � 1, 2, …, K (10)

, i, j � 1, 2, …, n; k � 1, 2, …, K (11)

2. Heuristic methods

As the split delivery vehicle routing problem is NP hard, for
the large problem the solution of the model cannot be obtained
for acceptable computer time consumption. It will be useful to
propose the heuristic methods for the large scale problem solution.
The modified heuristic methods for the traveling salesman problem
respective the vehicle routing problem will be used. There are the
following heuristics: nearest neighborhood method, insert method
and savings method. All the methods are illustrated on a numeri-
cal experiment. The differences of the results obtained by those
methods are shown on the case study.

It is assumed that the distance matrix C is symmetric, not neg-
ative. Let us denote M the set of cities that was not included in any
route. In the beginning of the method the set M equals {2, 3, …, n}.
The heuristic method ends when the set M is empty. The route will
be denoted as tr � (tr(1), tr(2), …, tr(m)), where tr(1) � tr(m) � 1.

2.1 The nearest neighborhood method

By this method the following steps are executed until the
set M is empty:

Step 1. Let us denote the city with the lowest distance c1i as
k and let it form the route tr(1) � 1, tr(2) � k, tr(3) � 1, let it set

,x 0 1ij
k ! " ,

q q x0 i
k

i ij
k

j

n

1

#
=

/

q qi
k

i
k

K

1

=
=

/

u q V x u1i
k

j
k

ij
k

j
k#+ - -_ i

x xij
k

i

n

ji
k

i

n

1 1

=
= =

/ /

x 1ij
k

j

n

2

#
=

/

x 1j
k

j

n

1

2

#
=

/

min c xij ij
k

j

n

i

n

k

K

111 ===

///
m � 3. If qk � V, delete the city k from the set M and set

, and continue to step 2. Otherwise the city is not
deleted from the set M, and city has the demand pk � qk � V, the
route is closed and the method continues by the step 1 (starting
the new route).

Step 2. If the set M is empty, the method stops. Let us find
the city k from M which minimizes the distance ctr(m�1).k and for
which the route enlargement tr by the city k by inserting it after
the city tr(m�1) satisfies the condition qk � V�. If qk � V�, the
route is closed and the method follows by the step 1 (starting the
new route), otherwise step 3.

Step 3. Let us enlarge the route tr by the city k by inserting
this city after the city tr(m�1), then increment m by 1. If qk � V�
delete the city k from the set M, set free capacity V� � V� � qk and
continue by step 2, otherwise set qk �qk � V� and continue to
step 1.

2.2 The insertion method

The following steps are done until the set M is not empty.
Step 1. Let us denote the city k with the highest distance c1i

and put the route tr(1) � 1, tr(2) � k, tr(3) � 1, and m � 3. The
city k is deleted from the set M. If the set M is empty the method
ends.

Step 2. Find city k from the set M by following these condi-
tions:
� it minimizes number d � ctr(i),k � ck,tr(i�1) � ctr(i),tr(i�1) for all

i � 1, 2, …, m�1 and k � M,
� the route is enlarged by the city k by inserting this city between

the city tr(i) and tr(i�1), where i minimizes the value d. If
qk � V, the city k is deleted from the set M and V� � V� � qk,
go to the step 2. Otherwise the city is not deleted from the set
M, and city has the demand qk �qk � V, the route is closed and
the method continues by the step 1 (starting the new route).

� enlarge the route tr by the city k by inserting this city between
the city tr(i) and tr(i�1), increase m by 1. If the set M is empty
the method ends, otherwise it follows the step 2.

2.3 The savings methods

The following steps are executed until the set M is empty:
Step 1. If the set M contains only the city k, the route tr(1) � 1,

tr(2) � k, tr(3) � 1 is formed, let m � 3. If qk � V then the k will
be deleted from the set M and the method ends. If not, k is not
deleted from M, qk �qk � V, repeat step 1.

Step 2. Let us find the pair of cities from M in the form (k,l),
that maximizes savings sij � c1i � cj1 � cij. If this pair (k,l) does
not exist, form (1,k,1), (1,l,1), stop.

V V qk= -

40 � C O M M U N I C A T I O N S 4 / 2 0 0 9

Step 3. Put the route tr(1) � 1, tr(2) � k, tr(3) � i, tr(4) � 1,
m � 4. If qk � qk � V, then k and l will be deleted from M and
V� � V � (qk � ql), step 4.

Step 4. Find i from the set M that maximizes sik , or j from M
that maximizes sij . If sik � sij (or j does not exist), the city i is
inserted into the route before the city k and if qi � V� then the city
i is deleted from the set M. Let s be increased by one and k equal
i. If , the city i is not deleted from M and qi � qi � V�. The route
is closed.

Find j that maximizes sij when inserting j into the route after
the city i. If sik � sij (or i does not exist), the city j is inserted into
route after the city i and if qj � V�, city j is deleted from M. Let m
be increased by one. If qj � V�, the city i is not deleted from M
and pj � qj � V�. The route is closed.

If neither i nor j does exist, the route ends and method con-
tinues by the step 1.

2.4 ACO metaheuristics

Ant colony optimization (ACO) is a metaheuristics which has
been invented in quite recent time. The idea was first introduced by
Marco Dorigo 15 years ago. Since then it has been applied on
many known problems and significant progress has been made in
optimizing this metaheuristics by improving its attributes, finding
right parameters values and especially combining it with another
metaheuristics, e. g. local search (Dorigo & Schützle, 2004).

The main idea of this metaheuristics lies in simulating the
behavior of natural systems, in this case ant colonies. The ants
usually search for the food for survival by exploring their environ-
ment. The most important part of this process is pheromone depo-
sition, which every ant does when he moves outside the anthill. The
more ants move on one path, the more pheromones they deposit and
attract other ants to use the path. They also deposit pheromones
when moving from the food source to the anthill, so the richer the
food source is, the more ants are attracted to it. This is achieved
also by depositing more pheromone when returning from richer
food sources.

This idea has been transformed into ant colony optimization
by transforming the food-search problem into mathematical prob-
lems, mostly represented by graphs, and by defining artificial ants.
Artificial ants are quite similar to the real ants. The difference is
that they usually move on the edges of the graphs and construct
feasible solutions of a problem. They are also often enhanced by
memory and other features needed for the solution construction.
When constructing the solution they follow the pheromone and
heuristic information.

The main framework of the algorithm is as follows:
0. Initialization – computing the initial pheromone and heuris-

tic information.
1. Solution construction – m solutions are built by m ants.

2. Pheromone evaporation – pheromone laid on the paths evap-
orates every iteration with specified rate.

3. Pheromone deposition – ants with w best solutions deposit
pheromone on their paths.

Steps 1-3 are repeated until the stop condition is fulfilled. The
stop condition can be set as a fixed number of iterations or as the
solution improvement no longer occurs after a predefined number
of iterations.

Our paper reports about the attempt to apply the ACO meta-
heuristics on SDVRP, which has been never done before.

Solution construction is done by an artificial ant by sequential
selection of the nodes and collection of the goods in the graph
until its capacity is full. Thus, it creates the node strings represent-
ing the solution. To accomplish this, we need first to define the
heuristic information ηij:

for i, j � M; i
 j (11)

This heuristic information is the same as the one used in the C-
W savings method introduced before. We also need the pheromone
information τij , which is initially set to a value corresponding
approximately to the value of pheromone, which will be laid by
the ants in one iteration (see further). In every node i, the ant
computes the probability of the next move for each node:

for j � M� (12)

where M� is a set of the nodes with unsatisfied demands in this
solution so far. Parameters α and β were set to 1 and 2 respectively,
as they had given the best experiments results. After the probabil-
ity computation the ant randomly chooses (with respect to the
given probabilities) the next node. This procedure is repeated
until all demands are satisfied.

After the solution is constructed, pheromone evaporation
takes place. Pheromone evaporation greatly helps with the speed
of solution convergence. It is described by the following formula:

τij � (1 � ρ).τij for i, j � M; i
 j (13)

where ρ is the pheromone evaporation rate and has been set to
0.01 in the experiments (1% of the pheromone evaporates every
iteration).

The last step of an iteration is pheromone deposition. The ant
lays pheromone on every edge its solution consists of. The
amount of pheromone laid (added to each edge) is computed as

Δτ � 1/T (14)

where T is the total length of the constructed solution. This allows
the ants with better solutions to lay more pheromone than those
with worse solutions.

pij

ij ij
k N

ij ij

x h

x h
=

!

a b

a b

l

7 7

7 7

A A

A A

/

d d dij i j ij1 1h = + -

41C O M M U N I C A T I O N S 4 / 2 0 0 9 �

2.4.1 Computational complexity analysis

Computational complexity of the algorithm implementing meta-
heuristic ant colony optimization method can be expressed from
the computational complexities of the partial steps.

When constructing the solution, each ant in certain node has
to make decision for the move to the next node. Considering n as
a number of nodes, this activity requires computing the probability
for each node by (12). This requires n steps and the whole activ-
ity is repeated as many times as many vertex walks there are in the
graph. The number of these walks depends on an instance’s values
and may vary from n to the sum of all demands of all customers
(that is the case when the vehicle’s capacity V is set to 1 which is
highly unlikely). In real data instances it is possible to presume that
there will be no need to make more than 2n walks, which means
that the number of split deliveries will not exceed double of the
number of nodes (that is when each node is split once in average).
With this presumption we can expect that the number of operations
will be a quadratic function with n as argument. That means that this
step will run with quadratic amortized computational complexity.
The asymptotic computational complexity, however, is pseudopoly-
nomial and depends on the value of all demands and vehicle’s
capacity.

Pheromone laying requires walking over the found solution
(or the path rings of the solution) and updating the pheromone
values of the edges included in the solution. Using the same pre-
sumptions as in the previous paragraph, we can except this oper-
ation to require number of steps from n to sum of all demands of
all customers. Therefore, we can assume this operation to have
a linear amortized computational complexity, but again, the asymp-
totic complexity is pseudopolynomial.

All in all, the single iteration of one ant takes O(n2) opera-
tions in average. Having m ants, we have the computational com-
plexity of single iteration of the whole colony O(m.n2).

Pheromone evaporations takes n2 steps but it is conducted
only once per a colony’s iteration, so it has negligible effect on the
overall complexity and so has the initialization phase of the algo-
rithm.

3. Numerical experiments

Let us have 20 cities from Slovakia and Czech Republic.
Bratislava (Slovakia) is a depot of all routes. The minimal distances
between the cities or between the cities and the depot are known
and the transportation is done in the public road network. The
modified heuristic methods were applied on 10 studies with dif-
ferent sets of cities. The demands of all customers are given by the
size of the cities and they are the same for each study. In the first
experiment the capacity of a vehicle is constant.

For the ACO metaheuristics the number of ants was set to
100, but only the half of them (those with the best solutions) in
each iteration were allowed to lay the pheromone. The number of
iteration was fixed to 1000. These settings were found as best in
the number of experiments.

After application of modified heuristic methods on different
studies of SDVRP we found out that we can achieve the best result
by the savings method, when considering only the heuristic methods.
The nearest neighborhood method is not suitable for SDVRP, see
the result table 1.

As for the ACO metaheuristics, we can see that even though
it uses the same heuristic information as the savings method does,
it generates better solutions in most of the input examples. In
addition, there is a lot of room for improving this implementation,
while it does not use any other optimization of the generated solu-
tions, which may include local search metaheuristics or improving
the strings by removing unnecessary splits at the end of some strings.
Hence, the ACO metaheuristics seems to be really a promising
method not only for the SDVRP to solve. It has a potential to
become very efficient method to solve NP-hard problems and has
good possibilities to be extended as a distributed algorithm for
parallel systems.

Table 1

In the second experiment the capacity of a vehicle is not con-
stant. We studied dependence of a total traveled distance on the
capacity of a vehicle. We applied the three modified heuristic
methods on more than 4000 SDVRPs with a different capacity of
a vehicle and we marked down their dependence between the
total traveled distance and the capacity of vehicle. The represen-
tative graph 1 represents application of a modified savings
method on the SDVRP. This analysis can be used operatively,
when the decision of the used vehicles capacity is to be taken.

Number
of cities

routes

Nearest
neighb.
method

(km)

Savings
method

(km)

Insertion
method

(km)

ACO
method

(km)

1 11 4 2555 1944 2245 1962

2 10 4 3063 2520 2457 2427

3 13 5 3804 3596 3471 3559

4 11 4 2688 2398 2419 2402

5 15 5 3463 3199 3150 3044

6 14 6 4521 3558 3865 3531

7 17 6 4123 3746 3911 3750

8 18 7 5163 4058 4476 4040

9 19 7 4692 4320 4538 4236

10 20 7 4667 4456 4725 4417

42 � C O M M U N I C A T I O N S 4 / 2 0 0 9

References

[1] BODIN, L., GOLDEN, B.: Classification in Vehicle Routing and Scheduling. Networks, Vol. 11, 1981
[2] DANTZIG, G.B.; RAMSER, J. H.: The Truck Dispatching Problem. Management Science 6 (1): 80–91, 1959
[3] DORIGO, M., SCHÜTZLE, T.: Ant Colony Optimization. MIT Press, 2004, ISBN 0-262-04219-3
[4] DROR, M., TRUDEAU, P.: Split Delivery Routing. Naval Reasearch Logistics, 1990
[5] EVANS J. R., MINIEKA E.: Optimization Algorithms for Networks and Graphs. Marcel Dekker, Inc., New York, 1992
[6] FABRY, J.: Dynamic Round and Cartage Problems (in Czech), Dissertation thesis. Praha: VSE-FIS, 2006
[7] GUTIN, G., PUNNEN, A. P.: The traveling salesman problem and its variations. Kluver 2002. ISBN 1-4020-0664-0
[8] JANACEK, J.: Mathematical Programming (in Czech), EDIS ZU, Zilina, 1999, ISBN 80-7100-573-8
[9] JANACEK, J.: Optimalization in Transport Networks (in Czech), EDIS ZU, Zilina, 2003, ISBN 80-8070-031-1
[10] PELIKAN, J.: Discreet Models in Operating Research (in Czech), Professional Publishing, 2001, ISBN 80-86419-17-7.

The dependence of the total traveled distance on the
vehicle capacity - The savings method

0

10000
20000

30000
40000

50000

60000
70000

80000

5 35 65 95 12
5
15
5
18
5
21
5
24
5
27
5
30
5
33
5
36
5
39
5
42
5
45
5

Vehicle capacity V

Th
e
to
ta
l
tr
a
ve
le
d
d
is
t
an

ce

(k
m
)

Fig. 1 Results of the second experiment

