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MATHEMATICS AND FINANCE

This article presents how mathematical tools can be used in finance. It also shows some interconnections among several parts of mathe-
matics as mathematical analysis, numerical analysis and financial mathematics. Linear interpolation is used to calculate unknown interest

rate in various parts of financial mathematics.
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1. Introduction

Mathematics is science widely used almost in all areas of human
life, so it is possible to claim that it is interdisciplinary science.
People intuitively expect mathematics in natural and computer
sciences as physics, informatics or in various technical sciences as
machine engineering, civil engineering or electrical engineering. The
majority of disciplines mentioned above are provided at our uni-
versity. Consequently mathematics is needed to be taught at each
faculty in a suitable way so that aspects of each discipline would be
satisfied. Many technical subjects are also somehow connected, we
can refer, e.g., to [2] where interconnections between physics and
electrical engineering are described.

Mathematics is also present in such spheres of interest as
economy and finance. In recent times there have arisen many new
problems which needed extension of financial mathematics and
mathematical modeling of various economic processes. In this article
we focus our attention to using mathematics for solving some
problems in finance.

The paper is organized as follows. In section 2 there are briefly
described some parts of mathematics of finance as general theory
of interest rates, ordinary simple annuities and bond pricing. In
section 3 the numerical method of linear interpolation is explained
and in the next section it is used to compute unknown interest
rates. Section 4 also contains several illustrative examples.

2. Mathematics of Finance

Knowledge in the field of mathematics of finance and actua-
rial science has increased in importance because of the variability
and high level of interest rates. Regardless of whether or not your
career is in business, understanding how interest is computed on
investments and loans is important to you as a consumer.
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The study of mathematics of finance usually begins with
a simple interest, sometimes used on short-term investments or
loans. The simple interest is, by definition, based only on the initial
deposit (the principal) which remains fixed during the entire inte-
rest period and accumulated value S of principal P at simple inte-
rest rate i is calculated according to the formula: S = P(1 + in).
Most investments pay a compound interest, i.e., earned interest
for each period is added to the principal before the interest is cal-
culated for the next period. The principal grows as the interest is
added to it. The account earns an interest on interest in addition
to earning interest on the principal. This method is used in long-
term investments and a corresponding formula for the accumu-
lated value at compound interest is: S = P(1 + i)". The third
basic method of calculating the interest is by continuous com-
pounding. It is reasonable to assume that the more frequently the
interest is compounded, the larger the compound amount becomes.
It is clear that as the number of periods per year increases, the
compound amount increases, although not very rapidly. The accu-
mulated value under continuous compounding is: S = Pe®, where
d1is called force of interest.

For a more detailed explanation we can refer, e. g., to [3],
where the theory of financial mathematics is described.

2.1. General Theory of Interest Rates

Usually (when using simple, compound or continuous interest)
it is supposed that the interest rate is a constant. In reality, when
time periods are longer, this is not true. Now, in accordance with
[1], let us consider the interest rate to be a function of time, i.e.,
i = i(t) - which is an effective interest rate at time ¢ capital of
1 € at time ¢ will increase to 1 + i(¢) during 1 time period. The
interest rate i(7) is an amount of interest of 1 € within time inter-
val [z, t,].
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Let A(z,, t,) be the future value of 1 € deposited at time ¢, and
due at time #,. The value A(¢,, t,) is called an accumulation factor.
For this factor, so called consistence principle is valid, i.e.,

Altg, 1,) = Altg, 1) * Ay, 1) + oo - AL, -1, 1),

L=t =hL=.=t,

Let us denote force of interest for time unit by d(¢). It is defined
by formula
Alt,t+h) — 1
o(¢) = lim————,

h-0" h

supposing that the limit on the right-hand side exists. Let 7, = 1,
denote /(1) = A(t,, 1). Now, considering that 6(z), f(¢) are contin-
uous functions 7 = 0 for and function f(¢) is differentiable, we have:
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Now we derive the formula for this accumulated value S. The
equation of value at the end of the term is: S = R + R(1 + i) +
+R(1+ 0>+ ..+ R +HL

This is a geometric sequence of n terms with the first term
a, = R and ratio q = 1 + i. Thus, for S we have:

g —1 0+ '—1_

S =a
tg—1 1+d—1
N (4V)
a+i—1
= Rii = Rs,.
Heres, i read “s angle n at i,” is called the accumulated value

of 1 € per period, or an accumulation factor for n payments. The
factor s,,|; can be computed directly with a calculator, or found in
Tables, listing these factors for certain values of / and n.

Alt,t)- Alt,t + h) — Alt, 1) B

Alt,r +h)— 1
8(z) = lim ( ) = li

1 A1) Alt,t + h) — At 1)

h=0"

-lim
A(lm t) h=—0" h
Hence, we obtain the differential equation f”(¢) = f(¢)d(r) and

its general solution is f() = ce [®94 where ¢ is some suitable con-
stant.

Using the consistence principle, for A(z,, ¢,) we have:

Alst) = 22?3 )

fs)

If 1, = 0, 1, = ¢ then we obtain A(0,/)/*“* and from this
S = Pel®) In the case when &(r) = 0 for all # we have known
formula for continuous compounding.

[:B(t)dr

In this section it was visible how some nontrivial tools of math-
ematical analysis (differential equations, integrals) can be utilized
in mathematics of finance.

2.2. Ordinary Simple Annuity

In this section we derive formulas for calculating accumulated
and present values of an ordinary simple annuity, which is a se-
quence of periodic payments. The accumulated value S of an ordi-
nary simple annuity of n periodic payments of R € each at an
interest rate i/ per period [see Fig. 1.] is the equivalent dated value
of the set of these payments due, at the end of the term of the
annuity (which is the date of the last payment).

Periods
(years) 0 1 2 n-2 n-1 n
At —t—
Payments R R R R R
=
R(1+1i)
R (1 +i)?
» R(1+i)™2
> R(1+0)"

Fig. 1 Ordinary simple annuity

h- A1)
1 f(t+h)—j(t)7L,
= f(l)}£%}—h - f([)f (f)

Multiplying both sides of equation (4V) by (1 + i)™", we
obtain a formula for the present value of ordinary annuity 4:
11—+
R ( i i)

A= = Ray;, (PV)
where a,; is called a discount factor for n payments and repre-
sents the present value of an ordinary simple annuity of 1 € per

period for n periods, with an interest rate of i per period.

The most efficient way to solve an annuity problem is to make
a time diagram, determine the type of annuity, and then apply the
proper formula.

In this part it is seen as the geometric sequence theory can be
used in financial mathematics.

2.3. Bonds - introduction

Financial newspapers list thousands of bonds issued by corpo-
rations, municipalities, and the government. In determining which
bonds are appropriate for their needs, investors should consider
a number of factors, including risk, expected rate of return, and
the feasibility of purchasing a short-term or a long-term bond. Tax
implications should also be considered.

A bond is a written contract that requires the issuer (borrower)
to pay the investor (lender) interest income. Most bonds make
fixed coupon payments at a coupon rate r per interest period every
year until the bond matures. Bond coupons are like annuity pay-
ments. At maturity, the bond issuer must also repay the face value
of the bond F. The market price of a bond equals its present value
P. Hence the investor who wishes to realize a rate of return 7 (until
the bond is redeemed or matures) should pay a price equal to the
discounted value of the n coupons C = F r plus the discounted
value of the face value:
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p—_C C C+F _
QA+ A+ a+i MP)
= Fra, JF—F s
LA+

which is equivalent to P = F + F(r — i)a,,, known as an alternate

purchase price formula.

nli

Since finding the solution for the yield rate per interest period
i (often called the yield to maturity) of previous equations is not
trivial, the following approximations are used:

C+(F—Pn
0.6P +0.4F
2. Bond Commercial method (Uhlir and Steiner (1994)):
. CHF—P)n

P

1. Hawawini and Vora (1982): i =

C+(F—Pln
F+pPr2

For more accurately results we can use the method of linear
interpolation, which is introduced in the next section.

3. Bond Salesman’s method: i =~

3. Linear Interpolation

Linear interpolation is the method of functions approximation
when linear functions are used to approximate some functions or
various measuring data. Using this method it is also possible to
compute arbitrary value x lying in the interval between two known
numeric data x, and x; when there are also known values y,, y,
and y as it can be seen in Fig. 2.

X1 X X2
Fig. 2 Sketch for deriving the formula

The easiest way to find a formula for linear interpolation is
the triangle similarity theory. We have:
2" _ YN

X X X=X’

From this equation we obtain the following formula for
unknown x:

YT
X:xl‘f‘(xz_xl)ﬁ, (LD
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which will be used later for calculating the unknown interest rate
and unknown yield to maturity.

4. Using Linear Interpolation in Mathematics of
Finance

In this section it is showed how linear interpolation can be
used in financial mathematics to compute unknown interest rate
concerning ordinary annuities and bonds. Some illustrative exam-
ples are given, too.

4.1. Ordinary Simple Annuity

Using formulae (4V) or (PV) it is possible to compute the
other unknown parameters, but it can be seen that the calculating
of the unknown interest rate 7 is not so elementary. Hence when
R, n and either S or A are given, the unknown rate /, may be deter-
mined approximately by linear interpolation. For most practical
purposes, linear interpolation gives sufficient accuracy.

F or fixed n, 5,; increases when i increases, whereas a,;
decreases. In general, the closer the bounds on the interest rate i,
the better the approximation of i furnished by linear interpolation.
We adopt the practice of interpolating between two nominal rates
iy and i, that are 1% apart and using factors s,,; and a,,, rounded
off to 4 decimal places. For the linear interpolation we use formula
(LD, where yy = s,,;,, ¥, = 5,;, and y = s, ; or, respectively y; =
=y V2 = Ay and y = a,;

n|

To obtain a starting value i, to solve an equation s,,; = k for
unknown i by linear interpolation, we may use the formula from

. (k/iny — 1 . .
[4]: i = E— and to obtain a starting value to solve an
equation a,,; = k by linear interpolation, we may use the formula
1 — (k/n)
from [4]: i, = %

Now we are in position to give some simple illustrative exam-
ples:

Example 1.
Find the interest rate i at which annual deposits 250 € will
accumulate to 5 000 € in 12 years.

We have R = 250, S = 5000, n = 12, i = ? We use the
formula (4V), so in our case we have: 250s;,; = 5000, that means
$121; = 20 = k. To determine the rate i, we find two factors s, |,
and s,,;,, one greater than 20 and one less than 20, and corre-
sponding values /; and i, that differ by 1%. These values provide
upper and lower bounds on the unknown rate i, which is then
approximated by linear interpolation. A starting value is:

o (kmy—1_ Qo127 —1
h k 20

= 0.0889 = 8.89%, so
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i, = 8% and i, = 9% and corresponding factors are:
S121008 = 18.9771 and 15,909 = 20.1407. Substituting all these
values to (LI) for unknown interest rate / we have:
Siali T Sig)i
i (— _
! b (Lz l]) Siofi, 7 Sl
=0.08 +(0.09 — 0.08)

= 0.0888 = 8.88%.

20— 18.9771
20.1407 — 18.9771

We may check the accuracy of our answer by calculating the
accumulated value of the deposits at i = 0.0888: § = 2505, 95 =
= 4999.24. Hence the unknown interest rate is 8.88%.

Example 2.

You are offered a loan of 15 000 € and agree to pay 1500 €
annually for 15 years. What annual rate of interest does this loan
charge?

We have R = 1500, 4 = 15000, n = 15, i = ? The way of solu-
tion will be similar to the previous example, but we use the formula
(PV). We obtain 1500a,5,; = 15000 = a5, = 10 = k. The start-

. . . . 1—(m)y _1—@10/15¢
ing value is determined as: i, = 3 = 0 =

0.0556 = 5.56%, interest rate values that differ by 1% are: i; = 5%
and i, = 6% and corresponding two factors are: a;5 s = 10.3797
and a;5)999 = 9.7122. Now using linear interpolation formula
(LI) for the unknown rate of interest we obtain:

Qis;i — Gys);
P= i () =

Qs);, — Qi
10 —10.3797
- — 005 _
0.05 + (0.06 0.05/9.7122 10.3797

= 0.05569 = 5.57%.

4.2. Bonds’ Yield to Maturity

In the section 2.3. we introduced three approximative methods
for computation of yield to maturity of bonds. If a more accurate
answer is desired, these methods should be followed by the method
of linear interpolation. This method requires determining market
prices of a bond for two interest rates, such that one price is smaller
and the other is greater than the given quoted price. To do this we
use the formula (MP). Linear interpolation, i.e., formula (L[) is
then used to find the unknown 7. If convenient, the interpolation
can be on a purchase price rather than a market price. Methods
introduced in section 2.3. can be used to determine a starting
point for the linear interpolation.

The following example illustrates the calculating of yield to
maturity 7.

REVIEW

Example 3.

A company issued bond with maturity time of 14 years, with
the face value 2 000 € with coupon rate 9.5%, compounded semi-
annually. The market price of the bond is 1 930 €. Find the yield
to maturity of this bond.

We have: F = 2000 €, P = 1930 €, r = 0.095/2, C = Fr = 95 €,
n=14-2=28,i="?
The starting value of semiannual interest rate is will be found

C+(F—P)
using, e.g., the bond Salesman’s method: i, = M =

(F+ P2

_ 95+ (2000 — 1930)/28
(2000 + 1930)/2

rest rate (yield to maturity) compounded semi-annually is: i

=2-0.0496 = 0.0992 = 9.92%. Now we determine two values 7|,
iy i, = ~% = 0.045, i, = ~% = 0.050 and corresponding

=0.0496, so annual effective inte-

@ _

market prices one smaller and the other greater than the given
market price 1930 €:

a 1—(@1+0.0457*
P(i) = Fra,, + =
(i) A+ iy 0.045
2000 s g,
(1 + 0.045)
1—(1+0.050*
P(i) = 95 ( )" 2000 -
0.050 (1 4+ 0.050)

= 1925.51¢€.

Now we are in the position to use the linear interpolation
formula (L/) reformulated to case in question:

P—P(i)
P(i) — P(i)

1930 — 2078.71
_ )
+(0.050 004501955 51 — 2078.71

It is visible that unknown annual yield to maturity
is /¥ = 2-0.04985 = 0.0997 = 9.97%.

i=i+i—i) =0.045 +

= 0.04985.

5. Conclusion

In this article we introduced some parts of mathematics of
finance where calculating of the unknown interest rate is needed
and this is non-trivial. In such cases the numerical method of linear
interpolation can be used. In this paper also some interdisciplinary
interconnections among mathematical analysis, numerical mathe-
matics and financial mathematics can be seen. Hence regardless of
some opinions, the world of mathematics and finance is close-knit.
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