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FAILURE OF COMPOSITES WITH SHORT FIBERS

Strength-based failure criteria are commonly used with the finite element method (FEM) to predict failure events in composite structures.
The laminate analogy is very useful for the calculation of the strength of composite materials with short fibers. The prediction of the laminate
strength is carried out by evaluating the stress state within each layer of the laminate based on the classical lamination theory. In this paper
FEM is used as a tool to predict the laminate strength. Failure criteria are used to calculate a failure index (FI) from the computed stresses
and user-supplied material strengths. The micromechanical analysis has been carried out using computer package MATLAB and numerical
simulation has been executed by using a commercially available ANSYS code.
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1. Introduction

Specifically fiber-reinforced composites are one of the most
widely used man-made composite materials; they are constituted
by reinforcing fibers embedded in a matrix material.

The strength of the uniaxially oriented fibrous structures
strongly depends on the length of reinforcing fibers in case of short
fibers composites. The fiber and matrix properties, fiber aspect
ratio and volume fraction as well as their orientation distribution
strongly influence the mechanical response of these materials. Due
to the complexity of their microstructure, damage in short fiber
composites is extremely difficult to assess numerically or experimen-
tally. Damage involves several types of local degradation processes
such as matrix microcracking, fiber/matrix debonding leading to
fiber pullout and breakage, etc. These damage mechanisms can
occur successively or simultaneously and thus reduce the overall
properties of the composite.

Modelling can play an important role in the analysis and design
of fiber-reinforced composite materials. Their mechanical proper-
ties and possible failure modes can be predicted early during the
design stage using effective modeling techniques such, as FEM,
boundary element method, a fast boundary element method, mesh-
free and meshless method, etc. [6, 8]. Recent developments in com-
mercial FEA packages allow the designer to make the detailed
analysis of composites.

In a laminate, stresses in the individual layers with different
orientations are generally different. Therefore, some of the layers
probably reach their limiting stresses before the other remaining
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layers and they fail first. This is generally referred to as first-ply
failure [1, 9]. A fiber-reinforced laminate may or may not be able
to carry loads except during the failure initiation, depending on
the nature of the first failure. There are two factors contributing
to this behaviour. First, the constituent materials are brittle in
nature and do not tolerate local failures. The second factor is
a large difference in stiffness and strength between the two prin-
cipal material directions in a layer.

This paper pertains to the micromechanical analysis of com-
posite materials with short fibers. The micromechanical analysis
takes into account the nature of the constituents and their distri-
bution. It can be used to evaluate the overall properties of com-
posites. Failure criteria are used to calculate a failure index (FI)
from the computed stresses and user-supplied material strengths.
The micromechanical analysis has been carried out using computer
package MATLAB. FEM is used as a tool to predict the laminate
strength based on the classical lamination theory [3]. Numerical
simulation has been prepared by using a commercially available
ANSYS code.

2. Micromechanics of composite material with short
fibers

The basic building block of a composite structure is a unidi-
rectional continuous fiber-reinforced lamina. Placed at various angles
of several unidirectional laminae we get a general composite struc-
ture. The classical laminate theory is the most commonly used
theory for analysing composites with randomly - oriented short
fibers [7, 10]. The laminates with the orientation of angles
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[0/£45/90] and [0/ £60] are particularly very suitable for practi-
cal applications. In order to predict the strength of this type of
composite, it is best to use the maximum strain criterion and then
the strength of a composite with randomly-oriented short fibers
can be determined by using the properties of unidirectionally rein-
forced composites with short fibers.

Transverse shear stresses are important in failure investigation
of composite laminates, primarily because they cause delamina-
tion. The longitudinal and transverse modules of these composites
can be expressed by Halphin Tsai equations [7]
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while the superscripts () and (f) refer to matrix and fiber, respec-
tively, Ty is a reinforcing factor. It depends on the geometry of the
fiber in a composite, the packing arrangement of the fibers and its
loading conditions. It ranges in value between 1 and 2. However,
only when a reliable experimental value of the £, is available for
a composite, the factor Ty can be derived and then applied to
predict the E, for a range of fiber-volume ratios of the same com-
posite.

A random microstructure results in transversely isotropic prop-
erties on a meso-scale level. A simple alternative is to assume that
the random microstructure is well-approximated by a periodic micro-
structure model (Fig.1) [9]. Periodic microstructure mechanics
exploits the geometric periodicity of the system in order to sim-
plify mechanical field variables, such as stress, strain, and stiffness.
In general, there is a correlation between all of these terms and the
position inside the representative volume element (RVE) [11].

Fig. 1 A periodic microstructure model, square array of fibers.

A simpler alternative is to assume that the random microstruc-
ture is well approximated by the hexagonal microstructure dis-
played in Fig. 2.

The elastic properties of a homogenized material can be com-
puted by [2], i.e. the longitudinal and transversal Young’s moduli
E| and E,, the longitudinal and transversal Poisson’s ratios v,
and v, and the longitudinal shear modulus G,,, as follows

E =C - 2C122/(C22 + Cs3)

1o = Cof(Cyy + C33) (3
E, = (C(Cyy + C53) — 2C122 (Coy = C33)/(C11 Gy — C122

Cyy = Cgs

2612

Fig. 2 A hexagonal microstructure model

In order to evaluate the elastic matrix C of a composite, the
RVE (fig. 3) is subjected to an average strain.
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Fig. 3 Representative volume element (RVE)

Then the volume average of the strain in the RVE equals to
the applied strain

1
&=y f e,dV . 4)

The components of the tensor C are determined by solving
three elastic models of the RVE with its parameters (a;, a,, a;)
subjected to the boundary conditions (BC). The unit strain applied
to the boundary results in a complex state of stress in the RVE.
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Subsequently, the volume average of stress in the RVE equals the
required components of the elastic matrix as follows

I |
C,=6=1[0dv. (5)

The coefficients in C are specified by setting a different problem
for each column of C. Then the components C;; are determined in
three steps:

1. For the components C;; (i = 1, 2, 3), the strain is applied to

stretch the RVE in the fiber direction x,

e =1,
g =e3=13=15=15=0 (6)
and the applied BC are

u(ay, X5, X3) = ay, uy(xy, ay x3) = 0, u3(xy, Xy, az) = 0,
u(0, x5, x3) = 0, uy(x,0,x3) =0, us3(x;,x,,0)=0, (7)
The coefficients C;; are specified by using the expression

G, =0,. (3)

2. For the components C;, (i = 1, 2, 3), the strain is applied to
stretch the RVE in the direction x,.

e =1,
e =e3=15=15=v=0 9)
and the applied BC are

u(ay, x5, x3) =0, uy(xy, ay, X3) = ay, u5(xy, Xy, az) = 0,
uy(0, x5, x3) = 0, uy(x, 0,x3) =0, us3(x, x,,0) =0, (10)
Again, the coefficients C}, are specified by using

(1)

C,=0,.

3. For the components C;; (i = 1, 2, 3), the following strain is
applied to stretch the RVE in the direction x;.

e =1,

0_ .0 _.0_.0_.0_
=6 =4 =V = Y6 =0

(12)
and applied BC are

uy(ay, Xy, x3) =0, wy(xy, @y, X3) = 0, us(xy, x5, a3) = as,
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C,=0.. (14)
The coefficient C,, can be determined as follows

1
C, = E(sz - C33) . (15)
The fiber-volume fraction is expressed as

T [ d )
Vv, = — . 16

) <2a2 (1o

3. Failure criteria for fiber-reinforced orthotropic layers

The strength of unidirectional fibers composite materials
depends on the direction of fibers on a macroscopic scale. Com-
posite layers are much stronger in the fibers direction than in the
direction perpendicular to their fibers. For loads that are primarily
parallel to the fibers, either in tension or compression, the mater-
ial strength is generally determined by the failure of the fibers. For
loads transverse to the fibers, failure is controlled by the failure of
the much weaker matrix material. The strength of a composite
layer in any other direction is based on various failure criteria [4].
Failure criteria for unidirectional fiber composites used in this paper
assume a state of plane stress and are therefore only applicable to
thin laminates. New 3D criteria for thick composites are derived
in [12].

3.1 Maximum stress and maximum strain criteria

The basic assumption in predicting the failure of fiber-reinforced
layers using the maximum stress and maximum strain criteria is
the same as for any other isotropic material. Failure is assumed
when the maximum stress along the fiber or transverse to the fiber
directions exceeds the strengths in tension or compression.

The failure surface is defined as

o, <X, 0,<Y, for 0,0,>0
o,>-X, 0,>-Y, for 0,0,<0 (17)
|T.| <8

where X and Y represent the ultimate strengths along and
transverse to the fiber directions respectively, indexes , and , refer
to tension and compression, respectively, S is the ultimate in-plane
shear strength of a specimen under pure shear loading.

Similarly, the maximum strain criterion states that failure
occurs when one of the following inequalities is violated

X Y
81<E, 82<E, €,€ >0
u(0, x5, x3) = 0, uy(x, 0, x3) =0, us3(x;, x5, 0) =0, (13) : (18)
g 4
Equally, the coefficients C;; are specified by using g >— E €, > — E €,6 <0
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3.2 Tsai-Wu criterion

A more general form of the failure criterion for orthotropic
materials under plane stress is expressed as [7]

Fy0, + F“ozl + 2F,0,0, + Fy,0, +

+ Fyy03 + Fyyt3, < 1 (19)
where
1 1 1 1 1 1
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The failure criterion for an orthotropic material under a strain
is expressed as

Gy + Gns? + G818 T Gty T

+ Gyt + Gy, < 1 (20)

where
Goy = Fo\E\y + FooEra, Goy = FooEyy + Fy oy
G, = F11E%1 + FzzEfz + FEnE,
Gy = FzzEgz + FIIE%Z T FioEnk,,
Gy = 2E\y(F\\Ey, + FyEyy) + 2F(Ef, + Ey\Eyy),

Gy = F, 44E4214 .

When F, = 2_X12 the Tsai-Wu criterion is reduced to the

i

Tsai-Hill criterion, and when F, = the Tsai-Wu criterion

2XX.
is reduced to the Hoffman criterion [7].

These failure criteria are used to calculate a failure index (FI)
from the computed stresses and user-supplied material strengths.
The failure index as a response of quantity is used for several
FEM packages and it is defined as

;= stress Q1
" strenght’

Failure criteria predict the first occurrence of failure in one of

the laminate layers. A value less than 1 denotes no failure and

failure is predicted when I = 1. The strength ratio is the inverse
of the failure index.

It is important to distinguish between the fiber failure (FF)
and the inter-fiber failure (IFF). In the case of shear plane stress,
the IFF criteria discriminates three different modes [1]. The IFF
Mode A is when perpendicular transversal cracks appear in the
lamina under transverse tensile stress with or without in-plane
shear stress. The IFF Mode B denotes perpendicular transversal
cracks, but in this case they appear under in-plane shear stress with
small transverse compression stress. The IFF Mode C indicates
the start of oblique cracks when the material is under significant
transversal compression.

The FF and the three IFF modes yield separate failure indices.

The failure index for FF is defined as
o/X if 0,>0

Ly = . 22

rr {GI/JQ if 0,<0 22)

For IFF with positive transverse stress, Mode A is active. The
failure index in this case is defined as

2 2 2
o Tis - Y\ (o, 0,
IIFF.A_\/<S>+<1 pé’S)(K) +p6rS

if 0,=0,

(23)
where pg, = 0.3.
Under negative transverse stress, either Mode B or Mode C is

active, depending on the relationship between in-plane shear stress
and transversal shear stress. The failure indices are defined as

. 6,<0

s = g/ + (P} + pea]. it 0| B 24)
Ti2 F;A

Jj L \/( Gn )2+<Y‘)2 if cdz<(1)v (25)
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where pg. = 0.2.

The limit between Mode B and Mode C is defined by the rela-
tion F,,/Fs,, where

F, = S[,/1+2 YC—1] 26

4 — 2p6c Dsc S s (26)
- __E,

F, = Sy1+2p., p. = Py (27)

4. Numerical examples

Example 1:
In this example, a composite with randomly oriented fibers is
assumed with its material characteristics for the fibers: E,= 210 GPa,
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v, = 0.3 and for the matrix £,, = 31 GPa, v,, = 0.15. The geomet-
rical characteristics of the fibers are L = 6 cm, d = 0.75 mm.

The material characteristics of the composite material given
for a variable amount of fibers are shown in Tab. 1, including their
Young’s modulus £ and Poisson’s ratio .

Material characteristics Tab.1
. . | Periodic micro- Classical

Halphin Tsai structure model | laminate theory

30 60 30 60 30 60
kg/m® | kg/m® | kg/m® | kg/m® | kg/m® | kg/m®

E Young’s

modulus [GPal 31.644 | 31.795 | 31.239 | 31.426 | 331.470| 31.960
Poisson’s ratio | 0.151 | 0.151 | 0.150 | 0.151 | 0.1470 | 0.1480

For the given amount of fibers of 30kg/m> and 60kg/m?>, there
are only minor differences in the material characteristics regardless
of the method used, whether the Halphin Tsai method, the periodic
microstructure model or the classical laminate theory. The corre-
lation between the modulus of elasticity and the fibers volume
fraction is given in Fig. 4.

The modules of elasticity - the first-ply £, 4, the second-ply
E, s and the ultimate failure E;p,,; in a fictitious laminate
[0/45/-45/90]S are used instead of these in a composite with short
fibers. The values calculated using the classical laminate theory
are given in Tab. 2.

Modules of elasticity Tab. 2
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Fig.4. The correlation between the modulus of elasticity
and the fiber volume fraction

Flexural tensile strengths Tab. 3
5| 30 kg/m?® 5| 60 kg/m®
30ke/m™ 1 pcsose0N | KM 703050
Feimeq [MPa] | 2.448 2.26 3.519 3.40
Fetkeq [MPa] 1714 1.83 2.463 2.40

30kg/m’ 60kg/m’
E\ g4 [GPa] 31.47 31.96
Eypan [GPa] 23.66 24.10
Espip [GPa] 15.75 16.02

The main characteristic essentially changed is the strength of
a composite with short fibers. In the absence of more accurate
information, the average and characteristic value of an equivalent
flexural tensile strength for steel wire fibers can be calculated as
follows [5]

X - 180W,A,d
0 180C + WA, d)

with C = 20 for hooked-end steel fibers under the trade name of
Dramix, where W, is the fiber content (in kg/m?), d,is the diame-
ter of steel fibers, and A, is the ratio between the length and the
diameter of steel fibers. The flexural tensile strength f;,,, ., and
characteristic flexural tensile strength £, ., for fibers are given as
(Tab. 3)

(28)

Reyvio Jremeq

ﬁum,eq - 100

’ fﬁ'tk. eq = 0'7-/,[/ctm,ez/ . (29)

Example 2:

In this example, failure indices were determined. In this case
the laminate consists of four layers [30/60/90/0] made from the
uniform material AS4D/9110 [11] with the uniform thickness.
The dimensions and the boundary conditions are described in Fig.
5.

The model is obtained by using the ANSYS input command
sequence and the element SHELL99. Following the generation of
model material strengths, the failure indices were calculated. The
strength constants of AS4D/9110 material are: F,, = 1830 MPa,
F,. = —1096 MPa, F,, = 57 MPa, F,, = —228 MPa, ¢, = —1,
cs=—1¢,=—1L

q=0,7"10"MPa

v v b3
[30/60/90/0]
N 3 1

150
sym

Sym
500

Fig. 5 Loads and the geometry of the laminate and the numbering of
its layers

The results are summarized in Tab.4, where I,y s is the
maximum stress failure index and /7y, is the Tsai-Wu failure
index. As can be seen from the given results, the maximum FI’s
are in layer 1. The distribution of failure indices is given in Fig. 9.
In the following two layers the maximum FI's occurred in the
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Failure indices Tab. 4
I I
No- Lamina Max. Node T Min. Node Max Node T Min. Node
1. 1.29¢-2 1 3.32e-7 9.52e-3 519 —5.64e-5 202
2. 7.64¢-3 4 1.23e-7 5.79¢-3 4 —3.63¢-5 202
3. 3.56e-3 1 0.50e-7 1.33e-3 4 —1.92e4 24
4. 3.22e-6 202 0.35¢-9 6627 0.1e-12 202 0.34e-18 467

NODAL SOLUTION

SMAKXF (AVG)
TOP

LAYR=1

RSYS=0

DIX =.076591
SMN =.332E-06
S =.012879

¥ X

T
.332E-06 .002862

.001431

.008586

.007155 .012879

NODAL SOLUTION

STWSI (AVG)
TOF

LAYR=1

RSYS5=0

DMX =.076591
5MN =-.564E-04
SIX =.009522

$-x

=
-.564E-04 .002072

-0o0loo0s 002138

-0D4zol

.ooezzs 008457

.005ZE5 -007393 -oosszz

Fig. 9 The distribution of failure indices I y4x s, Iy in the first lamina

middle of the laminate. Moreover, the distribution of the FI's in
layer 4 is different, the FI values are the smallest and their loca-
tions changed. The minimum values occurred in the corner of the
laminate where it is fixed.

5. Conclusion

Some calculation methods for the calculation of the modulus
of elasticity and the strength of randomly reinforced composite
materials are derived in the first example. There are no significant
differences in the modulus of elasticity when using the Halphin
Tsai method, the periodic microstructure model or the classical

laminate theory. The main characteristic that changed essentially
is the strength of a composite with short fibers. In the second
example failure criteria are presented using failure index. The
maximum failure index was calculated using the maximum stress
criterion. A laminate plate from AS4D/9110 material was used
and the maximum stress failure index Ij,,,ys and the Tsai-Wu
failure index /- 75 were computed.
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