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1. Introduction

The steady-state creep rate ε� at a given applied stress σ increases
with temperature T according to the Arrhenius equation (e.g. Cadek
[1])

where  (1)

is the apparent activation energy of creep and R is the universal
gas constant. The increase of the creep rate at a given temperature
with applied stress is mostly described by the power law

where  (2)

is the stress sensitivity parameter (see Garofalo [2]). Combining
Eqs (1) and (2), an equation

(3)

is obtained describing the dependence of creep rate on both the
variables determining experimental conditions (e.g. Cadek [1],
Sherby [3]). The main role of elasticity modulus in shear G is to
avoid the problems with physical units in the case when n is not
equal to integer.

The values of apparent activation energy and of stress sensitivity
parameter are implicitly assumed to be constant but nearly all the
results of creep tests show that the apparent activation energy
depends on applied stress and the stress sensitivity parameter
depends on temperature. The solution of these contradictions is
the main aim of the present paper.
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During several last decades the main attention was paid to
physical approach: various creep mechanisms were described by
means of many different models. Each of the models leads to certain
integer value of stress sensitivity parameter in the range from 1 to 7
(see e.g. Cadek [1]). The results of creep experiments lead to real
values of this parameter sometimes substantially overreaching the
value of 10. The approach presented in this paper is fully phenome-
nological but without any limitation of the stress sensitivity para-
meter value.

2. New relation for steady-state creep rate

Apparent activation energy Qa is defined for constant applied
stress and stress sensitivity parameter n is defined for constant tem-
perature, see Eqs (1) and (2). Therefore, dependences Qa � Qa(σ)
and n � n(T)  can be considered. Considering Eqs (1) and (2),
the creep rate can be concurrently expressed in the following two
ways

and (4)

because the factor of proportionality A can be dependent (at least
principally) on applied stress and the factor of proportionality B
can be dependent on temperature. But both relations (4) should
be equivalent in principle. To derive the common equation, the
values σ � 1 (MPa) and/or T → ∞ are introducing, for which Eqs
(4) turn substantially simpler [4]
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Using new declarations (and taking into account negative values
of p)

, , 

and (6)

the apparent activation energy as well as the stress sensitivity
parameter can be expressed as

,  and  (7)

and the form of the searched dependence is

(8)

Eq. (7) explains the meaning of parameter E: it represents
apparent activation energy for applied stress σ � σ0/e (e �
� 2.7182818… is the base of natural logarithms).

3. Geometrical explication of final equation and its
parameters

Logarithmic form of Eq. (8)

(9)

obtains in coordinates

, , , , 

, and  (10)
a simple form

z(x,y) � a(x � x0)(y � y0) � z0 , where a � E/R (11)

which represents the equation of hyperbolic paraboloid with the
origin in point (x0 , y0 , z0). This fact explains the meaning of
parameters T0 , σ0 and ε�0 . The equation of hyperbolic paraboloid
(11) written for (0,0,0) origin

z(x,y) � axy (12)

differs from the most usual form

x2 � y2 � bz,  where  b � 2/a (13)

because the paraboloids (12) and (13) are turned one to the other
by 45° round the z-axis.

Analyzing Eq. (8) it can be said:
1. For the temperature T � T0 the creep rate is independent of

applied stress (arbitrary number raised to 0 is equal to 1).
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, A B1 13 3f = =o ^ ^ ]h h g Therefore the curves ε� � f(T) for various applied stresses
intersect in one point and its coordinates are T0, ε�0 . In the
1/T � ln ε� fit these curves are represented by straight lines
with the slope equal to the ratio Qa/R , see Eq. (1).

2. For the applied stress σ � σ0 the creep rate is independent of
temperature (1 raised to arbitrary number is equal to 1). There-
fore the curves ε� � f(σ) for various temperatures intersect in
one point with coordinates σ0 , ε�0 . In the ln σ � ln ε� fit these
curves are represented by straight lines with slope equal to
stress sensitivity parameter n, see Eq. (2).

Representation of the curves ε� � f(T) and ε� � f(σ) by straight
lines in the fits 1/T � ln ε� and ln σ � ln ε� follows directly from the
fact that Eq. (8) describes hyperbolic paraboloid in coordinates
(10). Depicting of Eq. (8) not only in 3D by hyperbolic paraboloid
but also in 2D by families of straight lines if coordinates (10) are
used, defines unambiguously the geometrical meaning of parameters
T0 , σ0 and ε�0 as well as the meaning of the fourth parameter 
E � Qa(σ0/e) describing in fact the scale factor of the third axis
with respect to the first two axes. It is the greatest advantage of
Eq. (8) that for the complete description of steady-state creep rate
dependence on temperature and applied stress only four parame-
ters are enough. Obversely, the disadvantage of using parameters
T0, σ0, ε�0 and E is low accuracy of their determination on the base
of regression of experimental creep data using regression function
(8) because the values of these parameters are far from the regions
of testing temperatures, applied stresses and creep rates covering
usual experimental conditions.

4. Verification of new equation

The derived equation (8) was verified using the test results of
Sklenicka et al. [5, 6] obtained by studying creep of P91 steel. The
experimental results and the fit using regression equation (8) are
given in Fig. 1 (dependence on applied stress for various tempe-
ratures) and in Fig. 2 (dependence on temperature for various
applied stresses, see converse reciprocal temperature axis on top of
figure). In Fig. 2 only a part of results is plotted – only when
a certain stress was applied at least at two temperatures.

Averages and standard deviations of regression parameters
together with standard index of determination r2 and corrected
index of determination r2

corr are presented in Table 1.

The points of intersection of straight lines are (1478 MPa,
10.8 s�1) for Fig. 1 and (1270 K, 10.8 s�1) for Fig. 2. Parameter
E represents the apparent activation energy for the applied stress
σ � σ0/e � 544 MPa. Because the values of regression parameters
are substantially higher than typical values of strain rates, applied
stresses, and temperatures, their determination cannot be very
accurate in principle, see the values of standard deviations in Table
1 (but in spite of quite high values of standard deviations – relatively
to the averages of regression parameters – the fit of experimental
data is very successful which coincides with high values of the
indexes of determination). The other consequence of this fact is
that the values of regression parameters can hardly be interpreted
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as certain important quantities directly connected with the test
material. Maybe only temperature T0 (which is here 1270 K �
1000 °C) could be interpreted as a very rough approximation of
limit temperature at which the microstructure of test material
changes by phase transformation.

Changing slopes in both figures mean that the stress sensitivity
parameter is quite strongly dependent on temperature and that the

apparent activation energy is quite strongly dependent on applied
stress. The values of stress sensitivity parameter are not even
approximately equal to an integer and they reach sometimes even
15 or more. It seems that the classical approach based on assump-
tion of different particular mechanisms of creep deformation, rep-
resented by small integer constant values of the stress sensitivity
parameter independent of temperature, should be modified and
temperature dependence of this parameter should be considered,
e.g. according to Eq. (7).

5. Low temperature phenomena

Eq. (10) can be also a starting point for the description of the
dependence of yield stress on temperature and strain rate as well
as for the description of stress relaxation curves, in both cases at
temperatures lower than the usual temperatures of creep behav-
iour of studied material are. Only two following modifications are
useful to do:
1. For both these phenomena often connected with substantially

lower temperatures than creep it can be considered that T0 → ∞
(i.e. p � 0), which simplifies the description.

2. For lower temperatures the internal stress is necessary to
introduce in the relation for applied stress which, on the other
hand, a little complicates the description, i.e.

(14)

where σG is the internal stress connected with long-range obstacles
and σef is the effective stress connected with short-range obstacles
of dislocation motion. The internal stress is nearly temperature-
independent but it strongly depends on the development of dislo-
cation structure, i.e. on the level of plastic deformation. On the
other hand, short-range obstacles can be overcome with the assis-
tance of thermal fluctuations and, therefore, the effective stress is
strongly dependent on temperature and strain rate.

5.1 Yield stress

One of the most important stress values of test material is yield
stress σy, i.e. the loading stress at which first substantial motion of
dislocations appears and, in fact, plastic deformation starts to
develop (ε � 0, σG � const.). Respecting both the low-tempera-
ture features mentioned above, the relation

(15)

for the description of yield stress dependence on temperature and
strain rate can be written. Its validity can be verified by experi-
mental results of Vlach et al. [7] studying the dependence of yield
stress on temperature and strain rate for Cr-Mo steel used for
pressure vessels. The yield stress was measured in the temperature
range �196 to �20 °C, i.e. 77 to 293 K, and the strain rate range
0.0014 to 11 s�1. Experimental points and fitting curves drawn in
Fig. 3 show that the description of the dependence by Eq. (15) is
very successful.
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Fig. 1 Dependence of steady-state creep rate of P91 steel on applied
stress for the given temperatures (Sklenicka et al. [5, 6]) and its

regression using Eq. (8).

Fig. 2 Dependence of steady-state creep rate of P91 steel on
temperature for the given applied stresses (Sklenicka et al. [5, 6]) 

and its regression using Eq. (8).

Regression parameters and indexes of determination Table 1

ε�0 [s�1] E [kJ/mol] σ0 [MPa] T0 [K] r2 [1] r2
corr [1]

10.8�3.0 303�36 1478�329 1270�66 0.990026 0.989217
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Another verification of Eq. (15) can be made using the exper-
imental results of yield stress measurements of low-carbon steel
published by Meyers [8]. The measurements were made in the
temperature range 195 to 713 K, i.e. �78 to �440 °C, and in the
strain rate range 10�3 to 105 s�1. For the verification, only the
range 1 to 103 s�1 was chosen, in which the measurements were
made over the whole temperature range given above. Experimen-
tal results and their fit are drawn in Fig. 4. Also in this case the
description of the dependence by Eq. (15) is very successful.

Both Fig. 3 and Fig. 4 testify to the validity of Eq. (15), which
was obtained on the basis of the newly derived Eq. (8).

5.2 Stress relaxation

The basis of the stress relaxation description consists in the
proportionality between the strain rate and the rate of stress
decrease

(16)

where M is modulus of elasticity of the system formed by a test bar
and a testing device. Introducing this relation into Eq. (8), substi-
tuting p � 0 and considering effective stress σ ef instead of applied
stress σ, a differential equation

(17)

is obtained, which can be solved by direct integration. Its solution
is

(18)

where σ(0) is the initial value of stress (for t � 0) and parameters
α and m are temperature-dependent and they substitute the fol-
lowing more complicated expressions

and  

(19)

Eq. (18) is formally equivalent to the equation

(20)

derived by Li [9] using considerations different from the consid-
erations applied in this paper. Moreover, no further specifications
of parameters K and a were given and no connection between
parameter m and temperature was described by Li [9].
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Fig. 3 Dependence of yield stress of Cr-Mo steel on temperature for the
given strain rates (Vlach et al. [7]) and its regression using Eq. (15).

Fig. 4 Dependence of yield stress of low-carbon steel on strain rate for
the given temperatures (Meyers [8]) and its regression using Eq. (15).

Fig. 5 Results of relaxation measurements of ferritic nodular 
cast iron (Kohout [10]) and its regression using Eq. (18).
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To verify Eq. (18), the relaxation curves of ferritic nodular
cast iron determined by the author [10] were used, see Fig. 5. This
figure (as well as all the previous figures) shows very good agree-
ment between measured points and fitting curves.

The relaxation of many other metallic materials was studied
with the same result: Eq. (18) provides for a better fit of experi-
mental data than all the other equations used for this purpose.

6. Discussion

Eqs (8), (15), and (18) describe phenomena connected with
creep, yield stress, and stress relaxation using common parame-
ters ε�0 , σ0 , E and T0 or σG . In the case of creep temperature T0

plays a significant role while internal stress σG can be mostly
neglected with respect to effective stress σef . On the other hand,
in yield stress effects and during stress relaxation nonzero internal
stress σG should be considered while the term 1/T0 disappears
considering T0 → ∞. Naturally, parameters ε�0 , σ0 and E are
common for all studied phenomena and their values can be deter-
mined by studying some of these phenomena. Then in the case of
studying another phenomenon from those mentioned, the values
of common parameters can be used e.g. for rough estimation or
forecast of behaviour of studied material during the other phe-
nomenon. An example is given by Kohout [10]: to determine the
dependence of yield stress on temperature and strain rate it is suf-
ficient to determine only strain rate dependence. The temperature
dependence can be estimated on the basis of the value of parame-
ter E determined from exponent m of the stress relaxation curves,
see Eqs (15), (18) and (19). In the last resort only one test bar can

be sufficient for a rough estimation of the temperature and strain
rate dependence of yield stress, see [10].

7. Conclusions

1. Although using only four regression parameters, the newly
derived relation describes the dependence of steady-state creep
rate on temperature and applied stress better than the classi-
cally used Sherby relation does.

2. The newly derived relation respects a certain dependence of
activation energy on applied stress and of the stress sensitiv-
ity parameter on temperature.

3. Based on the newly derived relation, the dependence of yield
stress on temperature and strain rate can be deduced, which
provides for a very good fit of experimental results.

4. Also the equation describing the relaxation curves better than
the usually used equations do can be deduced from the newly
derived relation.

5. Although being phenomenological, the presented consistent
description of creep, yield stress, and relaxation issuing from
the same base enables to study these phenomena commonly,
using common set of parameters. The values of these para-
meters determined during studying one of these phenomena
can be used in the description or prediction of the other phe-
nomena.
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