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1. Introduction

A series of mathematical programming models of transporta-
tion problems were formulated and solved in the several last decades
to obtain solution of the transportation problems. In those models,
regular distribution of time intervals was taken as a quality crite-
rion of searched solutions, even if the original objective was to
minimize the total waiting time of passengers or cars in traffic
flows. This original criterion was replaced by the criterion of reg-
ularity to preserve linearity of the processed mathematical models.
This simplified approach was used because of that time state of
computation technique, which did not allow complying with non-
linear or large linear problems. Furthermore, the criterion of regu-
larity was often simplified to min-max or max-min objective function
and so, only the worst time interval of the solved problem was
improved by the associated optimization process.

This way, the obtained results were far from the optimal ones
in many cases, even if an exact method was used to solve the asso-
ciated linear programming problem. In this paper, we present two
transportation problems with the original and surrogate objective
functions and compare the results obtained by solving a simplified
model with the max-min criterion and a more precise and larger
model, which respects the quadratic criterion. This comparison
including the inevitable large problem solving is enabled by exploita-
tion of optimization environment called XPRESS-IVE. Abilities of
this tool are also studied in this paper in connection with the
necessity to solve much larger linear problems to comply with the
quadratic criteria. 

2. Max-min approach to the signal plan for light-
controlled crossing

Let us consider that a set I represents a set of traffic flows at
a crossing. Each traffic flow i � I is characterized by intensity fi ,
i.e. number of vehicles that enter the crossing per time unit, and
the saturated intensity fi

s of the flow, which is a maximum number
of vehicles that can leave the crossing per time unit. Let τi be the
standard for a minimum duration of green light for the flow i at
the crossing.

Let K � {F1, F2 , … Fr} be the set of r phases at the crossing.
A phase Fk is a set of non-collision flows that can have simulta-
neously green light at the crossing. We assume that the phases
follow in the order given by their indices and that the flow of green
light period for all phases falls into the interval �0, tmax �. Let mij

be the minimal interval between two successive collision flows
from different phases and let tmax be the time of crossing period
duration.

The natural objective is to design a signal plan so that the total
waiting time of all relevant participants is minimal. Let us realize
what the waiting time is for a flow i with the intensities fi and fi

s,
when duration of the red light is denoted as ti

r and duration of the
green light is denoted as ti

g.

Figure 1 depicts the dependence of a number of waiting vehi-
cles on the time during one period of a signal plan of a crossing.
The shadow area in the figure corresponds with the total waiting
time of all participants of the flow i entering the crossing during
the period tmax .
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The total waiting time of all participants of the flow i during
the period tmax is:

0.5 * (ti
r)2 * fi � 0.5 * (ti

r)2 * (fi)
2/(fi

s � fi) �
(1)

� 0.5 * (ti
r)2 * fi

s/(fi
s � fi) 

To build a model of the problem, we introduce the variable xi

as the starting time of the green signal of each traffic flow i during
one period and the variable yi as the ending time of the green
signal of traffic flow i during one period. Due to simplification, we
denote the value of expression (2) as ci .

0.5 * fi * fi
s/(fi

s � fi) . (2)

To model the duration ti
r of the red light, we introduce the

auxiliary variable ui , and then the model of the original problem
can be stated as follows:

Minimize (3)

Subject to tmax � yi � xi � ui for i � I (4)

Subject to for i � I (5)

Subject to yi � xi � τi for i � I (6)

Subject to xj � yi � mij for k � 1, …, r�1 i � Fk ,
j � Fk�1 (7)

Subject to xj � yi � mij � tmax for i � Fr , j � F1 (8)

Subject to xi � Z� for i � I (9)

Subject to yi � Z� for i � I (10)

Subject to ui � 0   for i � I (11)

The constraints (4) are link-up constraints connecting starting
and ending times of the green light period with the associated
length ui of the red light period.

The constraints (5) assure that time of the green signal for the
traffic flow i is at least as long as the crossing time for the passing
of all incoming vehicles. The constraints (6) assure that time of
the green signal for the traffic flow i is at least as long as the stan-
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dard time (if the crossing time for the passing of all incoming vehi-
cles is negligible).

Constraints (7) and (8) assure that the gap between the ending
time and starting time of two collision traffic flows from two con-
secutive phases is greater or equal to the minimal interval between
these two flows. Constraints (8) assure this situation for the traffic
flows between the last and the first phase. 

Unfortunately, the model (3)–(11) is non-linear because of
the objective function (3). This constituted serious obstacle in the
period, when the first attempt at the problem solving was done.
That is why the non-linear problem was substituted by linear one.
The substitution was in the following way [1]. The objective func-
tion corresponding with the total waiting time during the period
tmax was abandoned and replaced by a demand that the minimal
relative reserve of the relevant traffic flows should be as high as
possible. The relative reserve of the flow i with time of the green
signal ti

g is defined by the ratio (12).

(12)

To model this rearranged problem, we introduce a variable u
as a lower bound on each relative reserve of all relevant flows.
Now, making use of the above-mentioned variables xi and yi , the
new problem can be described as follows.

Minimize u (13)

Subject to for i � I (14)

Subject to yi � xi � τi for i � I (15)

Subject to xj � yi � mij for k � 1, …, r�1 i � Fk ,
j � Fk�1 (16)

Subject to xj � yi � mij � tmax for i � Fr , j � F1 (17)

Subject to xi � Z� for i � I (18)

Subject to yi � Z� for i � I (19)

Subject to ui � 0 (20)

Assuming that u � 1, the constraints (14) assure that the time
of the green signal for the traffic flow i is at least as large as the
crossing time for the passing of all incoming vehicles. Relative
reserve of the traffic flow i must be greater or equal to the lower
bound u. The other constraints have the same meaning as con-
straints (6)–(8) respectively.

Comparing the two models, we have to admit that they are not
equivalent, which implies that the result of the second problem
solution need not optimize the original objective function. In the
computational study we point out these differences and demon-
strate their consequences.
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Fig. 1 The waiting time of the flow i during period tmax
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3. Max-min approach to the arrival time coordination 
in public transport

Let us consider that a set I represents a set of n vehicle arrivals
at an observed stop in a given period. Let ti denote the time of the
arrival i. This arrival time can be shifted from a time ai , which
denotes the earliest arrival time of the associated vehicle, to the
time ai � ci , which denotes the last arrival of the vehicle. The
period ci is a maximal shift from the earliest arrival time of the
vehicle. 

Let t0 be a fixed time of the first arrival and tn be a fixed time
of the last vehicle arrival. It is assumed that passengers come to
the observed stop with an average intensity f. The objective is to
move the times ti for i � 1, …, n�1 so that the total waiting time
of passengers is minimal.

Figure 2 depicts the dependence of waiting passengers on the
time during the period �t0, tn�. The shadow area in the figure cor-
responds with the total waiting time of all passengers visiting the
stop during the considered period.

It follows that the total waiting time of all considered passen-
gers during the period �t0, tn� is:

(21)

To simplify the following model, we introduce an auxiliary
variable ui as the maximal waiting time between the arrivals ti�1

and ti for i � 1, …, n. We also introduce a variable xi , for i � 1, …,
n�1, which corresponds with a shift of the arrival time ti versus
time ai . Then the model of this original problem can be stated as
follows:

Minimize (22)

Subject to x1 � a1 � t0 � u1 (23)

Subject to xi � ai � xi�1 � ai�1 � u1

for i � 2, …, n�1 (24)

Subject to tn � xn�1 � an�1 � un (25)

Subject to xi 	 ci for  i � 1, …, n�1 (26)
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Subject to xi � 0 for  i � 1, …, n�1 (27)

Subject to ui � 0 for  i � 1, …, n (28)

Similarly as in the previous case of waiting time at the crossing
also in this case [1] there was no smart tool at disposal to solve
the quadratic problem (23)–(28). That was why the approach of
maximization of the shortest period between consecutive arrivals
was used. The variables xi , for i � 1, …, n�1 were introduced as
above and the variable y was used as the lower bound of periods
between pairs of consecutive arrivals. Then, the following linear
model was obtained:

Minimize y (29)

Subject to x1 � a1 � t0 � y (30)

Subject to xi � ai � xi�1 � ai�1 � y
for i � 2, …, n�1 (31)

Subject to tn � xn�1 � an�1 � y (32)

Subject to xi 	 ci for  i � 1, …, n�1 (33)

Subject to xi � 0 for  i � 1, …, n�1 (34)

Subject to y � 0 (35)

Constraints (30), (31) and (32) assure that any time gap
between arrival times of two consecutive arrivals must be greater
or equal to the lower bound y. Constraints (33) assure that the time
shift of the arrival time i is not greater than the maximal value of
the shift for the arrival time.

4. Linearization of quadratic criteria

As mentioned before, the more precise original models with the
waiting times expressions included into their objective functions
had to be abandoned due to non-linearity even when the way of
linearization had been known [2], [3]. The reason was that the lin-
earized model after rearrangement becomes too large to be solved
by the past tools.

In this paper we focus on answering the question whether the
new techniques implemented in today’s optimization tools are able
to overcome the former obstacles. Further we will show the way
of linearization, which can be used to replace objective functions
(3) and (22) by linear expressions almost without loss of accu-
racy.

We have to realize several next properties of the processed
non-linear models. First, both considered objective functions are
separable. It means that each non-linearity included in summation
depends only on one variable, whose value is bounded from lower
and upper sides by the values 0 and ui

max respectively. Second, the

Fig. 2 The waiting time of passengers during period �t0 , tn�
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objective functions are convex and their minimal value is searched
for. Third, the time values in the transportation problems are given
in some integer units, e.g. seconds or minutes. It means that one
unit is a maximal accuracy, which is necessary to take into account.
It follows that the quadratic function (ui)

2 can be replaced by
a piecewise linear function without loss of accuracy as shown in
Figure 3. 

To replace the non-linear item (ui)
2 by a piecewise linear func-

tion in the range �0, ui
max�, where ui

max is integer, we introduce
a set of auxiliary variables zij , where 0 	 zij 	 1 for j � 1, …, ui

max.
Then, the relation between variables ui and zij can be expressed by
equation (36).

(36)

The non-linear item (ui)
2 can be replaced by the right-hand-

side of equation (37).

(37)

In a common case when this way of linearization is used it is
necessary to assume that zij�1 � 0 follows from zij 
 1. Never-
theless, the assumption of convexity of the minimized objective
function approves this implication.

Now, models (2)–(11) and (22)–(28) can be linearized by
introducing a series of variables zij � 0, j � 1, … ui

max for each
non-linearity (ui)

2. The quadratic items in the objective function
must be replaced by a linear expression according to equation (37)
and link-up constraint (36) must be added to the model for each ui .
Furthermore, each model must be enlarged by constraints (38).

zij 	 1 for  i � I, j � 1, …, ui
max (38)

This way, the models become linear and linear-programming
solvers programmers can solve the associated problems. Never-
theless, we have to note that the number of auxiliary variables zij

can be a considerably large number in some cases. The number is
equal to the value of expression (39).
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5. Case study by XPRESS-IVE

To perform the computation of the original problems with the
waiting time and also the derived max-min problems, we used the
general optimization software environment XPRESS-IVE for our
study [4], [5]. This software system includes the branch-and-cut
method and also enables solution of large linear programming prob-
lems. The software is equipped with the programming language
Mosel, which can be used for both the input of a model and writing
of input and output procedures. The experiments were performed
on a personal computer equipped with Intel Core 2 Duo E6850
with parameters 3 GHz and 3.5 GB RAM.

To verify the method we formulated an instance for each
problem. The instance of a signal-plan determination for a light-
controlled crossing problem consists of 8 traffic flows which are
divided into two phases. The first phase consists of flows 1, 2, 5
and 6, and the second phase consists of flows 3, 4, 7 and 8. The
situation with traffic flows is described in Fig. 4. The values of

u max
i

i
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1=

/

Fig. 3 The quadratic function and its approximation by a piecewise
linear function fPL(ui)

Fig. 4 Signal plan example

Signal plan example – fi , fi
s, τi Table 1

i fi fi
s τi [s] F1 F2

1 0.1 0.3 10 1

2 0.2 0.5 10 1

3 0.15 0.4 10 1

4 0.2 0.6 10 1

5 0.1 0.3 10 1

6 0.15 0.35 10 1

7 0.25 0.6 10 1

8 0.15 0.4 10 1
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flow intensities fi , saturated flow intensities fi
s, standard minimum

duration τi of the green light for the flow i and assignment of flows
to phases are reported in Table 1. Table 2 contains the values of
the minimal time period mij between two successive collision flows
from different phases. The value of time of the crossing period
tmax was set to 150 seconds.

Results obtained by software environment XPRESS-IVE are
presented in Table 3. The column “Max-min” contains resulting
lengths of the green signal for flow i obtained by max-min approach
(13)–(20) and the column “Quadratic” contains the lengths of the
green signal for flow i obtained by the linearization of quadratic
criteria (2)–(11),(37),(38). “Waiting time” denotes the value of
the total waiting time in vehicle-seconds, “Row” denotes the number
of structural constraints of the model and “Columns” denotes the
number of used variables. The computational time in both cases 

The instance of the arrival time coordination problem con-
sists of 8 vehicle arrivals which can be shifted. The description of
the instance and the associated solution are given in Fig. 5 and
Table 4. The column ai denotes the earliest possible arrival time
of an associated vehicle, ci denotes the maximal shift of arrival of

the vehicle. We used the value of 10 for the intensity f of the pas-
sengers coming to the stop.

The column “Max-min” contains resulting lengths of intervals
between two successive arrivals obtained by the max-min approach
(29)–(35). The column denoted as “Quadratic” contains the lengths
obtained by the second method. “Waiting time” denotes the value
of the total waiting time in person-seconds, “Rows” denotes the
number of structural constraints of the model and “Columns”
denotes the number of used variables. The computational time in
both cases was also less than 1 second.

6. Conclusions

We renewed a solving approach to the public transport prob-
lems which originally included the waiting time in their objectives;
nevertheless they had been solved by much simpler max-min
method. Our contribution to the problem solving consists in
complying with the original non-linear objective function which
expresses the time lost by waiting passengers. To solve the prob-
lems with the original objective function, we applied a piecewise
linear approximation of the quadratic items and made use of
special properties of optimization environment XPRESS-IVE to
solve the resulting large linear problems. We implemented both
former and latter method to be able to compare the resulting

Signal plan example – mij Table 2

mij 1 2 3 4 5 6 7 8

1 – – 8 8 – – 8 –

2 – – – – – – 10 –

3 8 – – – 8 8 – –

4 10 – – – – – – –

5 – – 8 – – – 8 8

6 – – 10 – – – – –

7 8 8 – – 8 – – –

8 – – – – 10 – – –

Solutions for signal plan example obtained by Table 3
max-min approach and linearized quadratic criteria

i
Max-min Quadratic

yi � xi yi � xi

1 60 51

2 65 61

3 61 63

4 55 81

5 65 51

6 70 66

7 68 74

8 62 81

Rows 48 56

Columns 17 1216

Waiting Time 698 [vs] 573 [vs]

Fig. 5 Instance of the arrival time coordination problem

Solutions obtained using max-min approach Table 4
and linearized quadratic criteria

i ai ci

Max-min Quadratic

ti � ti�1 ti � ti�1

0 0 0 – –

1 10 4 10 10

2 15 1 6 6

3 22 8 6 10

4 28 8 6 10

5 34 20 6 12

6 40 30 6 12

7 46 30 6 12

8 84 6 38 12

9 90 0 6 6

Rows 17 25

Columns 9 359

Waiting Time 16760 [ps] 9480 [ps]
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optimal solutions, the sizes of processed models and the compu-
tational times necessary for obtaining optimal solutions. We found
that even if piecewise linear models are much larger than the pre-
viously used max-min models, the computational times increased
negligibly. With regard to the quality of optimal solutions, the com-
parison shows that the solutions obtained by the renewed approach
are much better than those obtained by the former max-min
approach.
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