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1. Introduction

Induction heating is a process that nowadays belongs to widely
spread and well elaborated technologies of heat treatment of metal
bodies from both theoretical and practical viewpoints. The process
is based on the induction of electric currents (and consequent pro-
duction of heat) in the body, usually as a consequence of one of
the two following mechanisms – exposition of the body by a time
variable magnetic field (the most frequent case) or movement of
the body in a static magnetic field.

The theory of induction heating is well known. The principal
mathematical model of this process consists of two partial diffe-
rential equations describing the distribution of magnetic and tem-
perature fields in the system. Magnetic field is usually formulated
in terms of magnetic vector potential A [1–3], while temperature
field is described by the heat transfer equation [4, 5].

Nevertheless, from time to time we must face problems where
this classical way of solution fails. Such problems are typically char-
acterized by geometrical incommensurability. This means that one
dimension of the investigated system is much smaller than the other
dimensions, but it is also important and cannot be neglected. We
can mention, for instance:
� nonferromagnetic plate 1 of very small thickness δ locally exposed

by a time varying irrotational magnetic field Bext generated in
magnetic circuit 2 by field coil 3 and concentrated by appro-
priate magnetic focusators 4.1 and 4.2, see Fig. 1,

� electrically conductive band 1 of very small thickness δ moving
at a velocity w between two systems of direct current-carrying
field coils or appropriately oriented permanent magnets 2.1 and
2.2 (see Fig. 2).

Handling such a problem as a geometrically 3D task (depen-
dent on quantities x, y, z, t), formulating it in the classical manner
(in terms of magnetic vector potential A) and solving it by the finite
element method is often unreal. This is because the thickness δ of
the plate (or band) is negligible with respect to its remaining dimen-
sions, which represents the fundamental complication for building
the finite-element mesh. Moreover, the definition area of the task
is three-dimensional and often large, which leads to a long com-
putation time.
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Fig. 1 Induction heating of a very thin plate (δ �� a,b):
1–locally heated thin nonferromagnetic plate,

2–laminated magnetic circuit, 3–field coil, 
4.1, 4.2–ferromagnetic focusators of magnetic field
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On the other hand, considering the problem as a 2D task
described by the magnetic vector potential A (thickness δ being
neglected) is also counterproductive because it is not possible to
numerically approximate the boundary conditions for this quantity
along the plate.

In similar cases it is often advantageous to use for modeling
of the electromagnetic field the electric vector potential T, as is
shown in this paper.

2. Formulation of the Problem

Consider a very thin nonferromagnetic and electrically con-
ductive circular plate of thickness δ → 0 and electrical conductiv-
ity γel , whose surface is denoted as Ω1 and its boundary Γ (see Fig.
3). The plate is locally (in a subdomain Ω2 � Ω1) exposed by
a time variable external irrotational magnetic field Bext(t). 

Denoting the electric field strength in the plate E, the corre-
sponding eddy current density induced in it is

, (1)

and the corresponding volumetric Joule losses are

. (2)

The aim of the paper is to determine the distribution of Jind

and wJ,ind in the plate, whose knowledge is the crucial condition
for finding the time evolution of its temperature.

If the problem were solved in the classical way using magnetic
vector potential A, the quantity Bext(t) would be a boundary con-
dition over the locally exposed surface Ω2 of the heated plate. But
in this case the plate would have to be considered 3D and when
its thickness δ would be small, meshing of the plate could cause
crucial difficulties.

The method described in the paper uses the electric vector
potential T. As we will see in the next section, this allows the exter-
nal irrotational magnetic magnetic flux density Bext(t) becoming
the right-hand part of the partial differential equation describing
the distribution of T. The numerical discretization is now only
carried out in the 2D area Ω2(x,y), no matter how small is the
thickness δ. The only disadvantage of this approach is that the
density of eddy currents along the thickness of the plate is uniform.
But with respect to very small value of δ this error plays no sig-
nificant role.

3. Continuous Mathematical Model

Introduce the electric vector potential T by 

. (3)

Now the second Maxwell equation describing the electric field
in the plate reads

, (4)

where B is the total flux density in the plate. This consists of two
parts: the mentioned external magnetic flux density Bext from the
external source and magnetic flux density Bind produced by the
induced eddy currents Jind (1). Now, we can transform (4) into
the form

. (5) 

Using the first Maxwell equation as the relation between Jind

and Hind (the displacement currents being neglected)

(6)

we can write

, (7)
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Fig. 2 Induction heating of a very thin electrically conductive band 
δ �� a moving at a velocity w in time invariable magnetic field gener-

ated by a system of permanent magnets: 1–moving band, 2.1, 2.2–
systems of permanent magnets, 3.1, 3.2–front roll stand
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Fig. 3 General arrangement of a very thin (δ → 0) nonferromagnetic

plate exposed by local time variable magnetic field
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and hence

, (8)

where ψ is an arbitrary scalar function. But in our case T repre-
sents the electric vector potential only produced by the induced
magnetic flux density Bind. That is why we can put ψ � 0 and

. (9)

After inserting (9) into (5) we obtain the fundamental equa-
tion for the electric vector potential in the form

. (10)

The initial and boundary conditions for potential T can be
derived from the physical aspects of the problem.

The initial condition follows from the fact that before the
plate is exposed by external magnetic field, Bext(Ω2, t � 0) � 0, so
that E(Ω1, t � 0) � 0, and, hence, curlT � 0. This results in T �
gradΦ, where Φ is any scalar function. Without any loss of gen-
erality we can put Φ � 0, so that T(Ω1, t � 0) � 0.

The boundary condition follows from the fact that the currents
induced in the plate in the direction of its any outward normal to
the plate vanish (Jn,ind(Γ, t) � 0. This gives �γel � �T(Γ, t)/�τ �
� 0 ⇒ T(Γ, t) � C (symbol τ denoting the tangent, see Fig. 3),
where C is a constant vector. In order to preserve the consistency
with the above initial condition T(Ω1, t � 0) � 0, we immediately
obtain C � 0.

From the above formulas we can see two principal advantages
of introducing the electric T potential for such kinds of problems:
� Potential T is only defined in the electrically conductive domain,

in our case only in the plate. On the other hand, the magnetic
vector potential A would have to be determined everywhere in
the whole system (i.e., inductor, magnetic cores, flux concentra-
tors, ambient air), which would require much larger 3D mesh.
The transversal discretisation of the thin plate, moreover, could
lead to complications. 

� The boundary conditions for the electric vector potential T can
be derived very easily. On the other hand, finding the value of
the magnetic vector potential A along the boundary Γ is impos-
sible and for solution we would have to introduce a sufficiently
distant artificial Dirichlet boundary.

� The only drawback of the presented approach is that the cur-
rents induced in the disk have the same density along its thick-
ness. But this is not very significant when thickness δ of the
plate is substantially smaller than the depth of penetration.

Solution of (10) provides the distribution of the electric vector
potential T and, consequently, distribution of all remaining electric
and magnetic quantities in the plate. Distribution of current density
in the plate is then given by formula
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and the corresponding volumetric Joule losses are

. (12)

4. Analogy with Magnetic Vector Potential 
for Planar Plates

In this section we will show an important analogy of equation
(10) with the equation for vector potential A in case that the plate
under inspection is planar (it lies in the plane x,y in Cartesian
coordinates) and vector Bext is perpendicular to it (it is parallel
with the z-axis.

For this specific case equation (10) can be written in the form

, (13)

because now both vectors T and Bext have only the -components
Tz and Bz,ext.

Consider another situation. An infinitely long massive non-
magnetic cylindrical body V1 (with the axis identical with axis z)
of electric conductivity γel and cross section Ω1(x,y) carries time-
variable electric current i(t) of density γz,ext(x,y,t) that passes in
the z-direction through body V2 of cross section Ω2 (see Fig. 3).
The region Ω2 is insulated from Ω2 � Ω2 by a perfect, infinitely
thin insulating layer.

Now, the time variable magnetic field in the whole body pro-
duced by current i(t) can be described by the well-known partial
differential equation of parabolic type for magnetic vector poten-
tial A (that also exhibits only one nonzero component Az in the 
z-direction) in the form

, (14)
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Fig. 4 Infinitely long nonmagnetic cylindrical body carrying time-
varying current: 1–infinitely thin perfectly insulating interface
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It is obvious that equations (13) and (14) are quite analogous.
The same holds for the derived quantities: in case of the electric
vector potential T we have

(15)

while in case of the electric vector potential A we analogously
obtain

. (16)

This analogy results in the fact that the indicated linear problem
described in terms of the electric vector potential Tz can easily be
solved by any software working with the magnetic vector potential
Az (while the codes working with the magnetic vector potential A
abound, practically no professional code – except for user’s pro-
grams – works with the electric vector potential T). We can proceed
in the following way:
� First we model the arrangement in Fig. 4. Then we substitute 

for Jz,ext the value and put Az(Γ1, t) � 0.

� After computing the distribution of Az � Tz using (14), we cal-
culate the distribution of Bx, By (16) and multiplying them by
γel we immediately obtain the corresponding distribution of
Jx,ind and Jy,ind .

5. Illustrative Example

Consider a thin circular aluminum plate (Fig. 5) of dimen-
sions δ � 0.001 m, rmax � 0.1 m and electrical conductivity 
γel � 3.4 � 107 S/m. The plate is exposed by an external magnetic
field Bz,ext(t) in a concentric circle of radius rmin � 0.02 m. 

The time evolution of magnetic flux density Bz,ext(t) is described
by periodic saw-like oscillations whose parameters follow from
Fig. 6.

The aim of the solution is to determine the spatial and tempo-
ral distribution (module of the corresponding vector) of the induced

t

B1 ,z ext

0 2

2

n

,B
y

A
B

A

xx

z z

y
2

2

2

2
= =

,J
y

T
J

x

T
, ,x ind el

z

y ind el

z

2

2

2

2
c c= =-

current density Jϕ,ind(r,t) (ϕ denoting the circumferential direc-
tion) and volumetric Joule losses wJ(r,t).

All the results presented in the following figures correspond
to the situation in the 10th period, which practically means the
steady state (with one exception that will be discussed later).

The orientation of the induced current density Jind(r,t) �
� ϕ0Jϕ,ind(r,t) in the period is obvious from Figs. 7a, 7b. It is con-
nected with the change of sign of the time derivative dBz,ext(t)/dt,
see Fig. 6.

The time evolution of module Jϕ,ind(r,t) along different radii
of the plate is depicted in Fig. 8. The highest values are on the
circle of r � rmin � 0.02 m, i.e., along the boundary of the domain
exposed by the external magnetic field Bz,ext(t). But not too far
from this boundary, for example along the radii r � 0.015 m or 
r � 0.025 m, its values are significantly lower.

δ

Fig. 5 Thin aluminum circular plate exposed 
by time-variable magnetic field 

Fig. 6 Time evolution of magnetic flux density Bz,ext(t) and its time
derivative (f = 1000 Hz, tp = 0.001 s, Bmax = 1 T)

Fig. 7a Distribution of the induced current density Jind(r,t) 
in the plate in the first half of the period
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The distribution of module Jϕ,ind(r,t) of vector Jind along the
radius r of the plate at different time levels of the 10th period,
depicted in Fig. 9, also confirms the above conclusions. The figure
shows that the highest values of the induced current density occur
just on the radius r � rmin � 0.02 m, i.e., on the external bound-
ary of the area exposed by the magnetic flux density Bz,ext(t).
These values vary with time, similarly as the mentioned magnetic
flux density.

The distribution of the volumetric Joule losses wJ,ind(r,t) along
different radii of the plate within the 10th period (depicted in Fig.
10) also confirms the above statements. The highest losses are also
produced on radius r � rmin � 0.02. On the other hand, observ-
able is there certain disproportion between the value wJ,ind(r �
� 0.02, t/tp � 0.5) and other value wJ,ind(r � 0.02, t/tp � 1),
where t/tp is relative time in the period of length tp . This is prob-
ably connected with the asymmetry of the distribution of Jϕ,ind(r,t)
(see Fig. 8). It is obvious that the 10th period is not yet the ideal
steady state.

6. Conclusion

Electric vector potential seems to be a powerful tool for model-
ing induction heating in linear systems characterized by geometri-
cally incommensurable elements, because it allows handling specific
3D arrangements as 2D problems. Another advantage consists in
the formal similarity of equations for the electric vector potential
and magnetic vector potential, which makes possible to use clas-
sical FEM codes for numerical computation of such tasks.

Next work in the field will be aimed at the following problems:
� Application of the method in case that the external magnetic

field is generally rotational.
� Model of heating taking into account the temperature variations

of physical parameters of the system. 
� Modeling of the whole problem in the hard-coupled formulation

(heating of the plate affects its electrical conductivity) together

Fig. 7b Distribution of the induced current density Jind(r,t) 
in the plate in the second half of the period

Fig. 9 Time evolution of Jϕ,ind(r,t) for three various radii 
of the plate within the 10th period 

I. – t/tp = 0, II. – t/tp = 0.2, III. – t/tp = 0.4

Fig. 10 Time evolution of volumetric Joule losses
wJ,ind(r,t) for three various radii of the plate within the 10th period 

(t/tp being the relative time in this period)
I. – r = 0.015 m, II. – r = 0.02 m, III. – r = 0.025 m

ϕ
i

Fig. 8 Time evolution of Jϕ,ind(r,t) for three various radii of the plate
within the 10th period ( being the relative time in this period)

I. – r = 0.015 m, II. – r = 0.02 m, III. – r = 0.025 m
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with the thermoelastic changes (leading to small variations of
its dimensions) using our own library Hermes [6] with interface
Agros based on a fully adaptive higher-order finite element
method.
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