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INDUCTION HEATING OF VERY THIN METAL PLATES
MODELLED BY ELECTRIC VECTOR POTENTIAL

A novel way of modelling of induction heating of very thin nonferromagnetic plates exposed by periodically varying magnetic flux is pre-
sented. The currents induced in the plate are described by means of the T-electric vector potential. The mathematical model is solved numer-
ically, by a code developed and written by the authors. The methodology is illustrated with an example whose results are discussed.

1. Introduction

Induction heating is a process that nowadays belongs to widely
spread and well elaborated technologies of heat treatment of metal
bodies from both theoretical and practical viewpoints. The process
is based on the induction of electric currents (and consequent pro-
duction of heat) in the body, usually as a consequence of one of
the two following mechanisms - exposition of the body by a time
variable magnetic field (the most frequent case) or movement of
the body in a static magnetic field.

The theory of induction heating is well known. The principal
mathematical model of this process consists of two partial diffe-
rential equations describing the distribution of magnetic and tem-
perature fields in the system. Magnetic field is usually formulated
in terms of magnetic vector potential A [1-3], while temperature
field is described by the heat transfer equation [4, 5].

Nevertheless, from time to time we must face problems where
this classical way of solution fails. Such problems are typically char-
acterized by geometrical incommensurability. This means that one
dimension of the investigated system is much smaller than the other
dimensions, but it is also important and cannot be neglected. We
can mention, for instance:

e nonferromagnetic plate 1 of very small thickness o locally exposed
by a time varying irrotational magnetic field B,,, generated in
magnetic circuit 2 by field coil 3 and concentrated by appro-
priate magnetic focusators 4.1 and 4.2, see Fig. 1,

e electrically conductive band 1 of very small thickness 6 moving
at a velocity w between two systems of direct current-carrying
field coils or appropriately oriented permanent magnets 2.1 and
2.2 (see Fig. 2).
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Handling such a problem as a geometrically 3D task (depen-
dent on quantities x, y, z, t), formulating it in the classical manner
(in terms of magnetic vector potential A) and solving it by the finite
element method is often unreal. This is because the thickness ¢ of
the plate (or band) is negligible with respect to its remaining dimen-
sions, which represents the fundamental complication for building
the finite-element mesh. Moreover, the definition area of the task
is three-dimensional and often large, which leads to a long com-
putation time.
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Fig. 1 Induction heating of a very thin plate (6 << a,b):
1-locally heated thin nonferromagnetic plate,
2-laminated magnetic circuit, 3-field coil,

4.1, 4.2-ferromagnetic focusators of magnetic field
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Fig. 2 Induction heating of a very thin electrically conductive band
0 << a moving at a velocity w in time invariable magnetic field gener-
ated by a system of permanent magnets: 1-moving band, 2.1, 2.2-
systems of permanent magnets, 3.1, 3.2-front roll stand

On the other hand, considering the problem as a 2D task
described by the magnetic vector potential A4 (thickness ¢ being
neglected) is also counterproductive because it is not possible to
numerically approximate the boundary conditions for this quantity
along the plate.

In similar cases it is often advantageous to use for modeling
of the electromagnetic field the electric vector potential 7, as is
shown in this paper.

2. Formulation of the Problem

Consider a very thin nonferromagnetic and electrically con-
ductive circular plate of thickness ¢ — 0 and electrical conductiv-
ity y.;, whose surface is denoted as (2, and its boundary I (see Fig.
3). The plate is locally (in a subdomain 2, C 2,) exposed by
a time variable external irrotational magnetic field B, (7).

B cxt(t)

Fig. 3 General arrangement of a very thin (0 — 0) nonferromagnetic
plate exposed by local time variable magnetic field

Denoting the electric field strength in the plate E, the corre-
sponding eddy current density induced in it is

Jos = Va E, (D

and the corresponding volumetric Joule losses are

WJ,ind = ‘Iind ¥ N (2)

1
Va
The aim of the paper is to determine the distribution of J;,4

and wy ;4 in the plate, whose knowledge is the crucial condition
for finding the time evolution of its temperature.

If the problem were solved in the classical way using magnetic
vector potential 4, the quantity B,,,(#) would be a boundary con-
dition over the locally exposed surface (2, of the heated plate. But
in this case the plate would have to be considered 3D and when
its thickness & would be small, meshing of the plate could cause
crucial difficulties.

The method described in the paper uses the electric vector
potential T. As we will see in the next section, this allows the exter-
nal irrotational magnetic magnetic flux density B, (#) becoming
the right-hand part of the partial differential equation describing
the distribution of T. The numerical discretization is now only
carried out in the 2D area (2,(x,y), no matter how small is the
thickness 0. The only disadvantage of this approach is that the
density of eddy currents along the thickness of the plate is uniform.
But with respect to very small value of ¢ this error plays no sig-
nificant role.

3. Continuous Mathematical Model
Introduce the electric vector potential 7" by
E=—curlT. (3)

Now the second Maxwell equation describing the electric field
in the plate reads

_9B

curlE = — curl(curlT) = o

4
where B is the total flux density in the plate. This consists of two
parts: the mentioned external magnetic flux density B,,, from the
external source and magnetic flux density B, produced by the
induced eddy currents J; 4 (1). Now, we can transform (4) into
the form

aBexl E-)B,ind
+

curl(curlT) = o o

(%)

Using the first Maxwell equation as the relation between J; 4
and H; 4 (the displacement currents being neglected)

Joa = curl H, (6)
we can write

Jos = 7aE = — yacurlT = %Cur]Bind > (N
0
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and hence

T = B — gradlﬁ > (3)

1
Tallo

where 1 is an arbitrary scalar function. But in our case T repre-

sents the electric vector potential only produced by the induced

magnetic flux density B,,4. That is why we can put ¢ = 0 and
B
Yallo

- = By = —7altoT. 9

After inserting (9) into (5) we obtain the fundamental equa-

tion for the electric vector potential in the form
T _ 9B,

curl(curl?) + 7= =

10
ot ot (10)

The initial and boundary conditions for potential 7" can be
derived from the physical aspects of the problem.

The initial condition follows from the fact that before the
plate is exposed by external magnetic field, B,,(¢2,, t = 0) = 0, so
that E(2,, t = 0) = 0, and, hence, curl7 = 0. This results in 7=
grad®, where @ is any scalar function. Without any loss of gen-
erality we can put @ = 0, so that 7(£2,, 1 = 0) = 0.

The boundary condition follows from the fact that the currents
induced in the plate in the direction of its any outward normal to
the plate vanish (J,;,4(Z’ 1) = 0. This gives —y,, - dT(I, 1)[dr =
= 0= T(I, t) = C (symbol 7 denoting the tangent, see Fig. 3),
where C is a constant vector. In order to preserve the consistency
with the above initial condition 7(£2,, t = 0) = 0, we immediately
obtain C = 0.

From the above formulas we can see two principal advantages
of introducing the electric 7 potential for such kinds of problems:
e Potential T'is only defined in the electrically conductive domain,

in our case only in the plate. On the other hand, the magnetic
vector potential 4 would have to be determined everywhere in
the whole system (i.e., inductor, magnetic cores, flux concentra-
tors, ambient air), which would require much larger 3D mesh.
The transversal discretisation of the thin plate, moreover, could
lead to complications.

e The boundary conditions for the electric vector potential 7" can
be derived very easily. On the other hand, finding the value of
the magnetic vector potential 4 along the boundary I is impos-
sible and for solution we would have to introduce a sufficiently
distant artificial Dirichlet boundary.

e The only drawback of the presented approach is that the cur-
rents induced in the disk have the same density along its thick-
ness. But this is not very significant when thickness ¢ of the
plate is substantially smaller than the depth of penetration.

Solution of (10) provides the distribution of the electric vector
potential 7" and, consequently, distribution of all remaining electric
and magnetic quantities in the plate. Distribution of current density
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and the corresponding volumetric Joule losses are

Wy = 7a

(12)

curlT‘2 .

4. Analogy with Magnetic Vector Potential
for Planar Plates

In this section we will show an important analogy of equation
(10) with the equation for vector potential 4 in case that the plate
under inspection is planar (it lies in the plane x,y in Cartesian
coordinates) and vector B,,, is perpendicular to it (it is parallel
with the z-axis.

For this specific case equation (10) can be written in the form

3T T T, dB...

o’ 8—))2*7@1#05:* ar

(13)

because now both vectors 7" and B,,, have only the -components
T,and B, ,,.

Consider another situation. An infinitely long massive non-
magnetic cylindrical body V; (with the axis identical with axis z)
of electric conductivity y,, and cross section £2,(x,y) carries time-
variable electric current i(¢) of density y, . (x.y.7) that passes in
the z-direction through body V, of cross section (2, (see Fig. 3).
The region (2, is insulated from 2, — £, by a perfect, infinitely
thin insulating layer.

J zZ,ext

Fig. 4 Infinitely long nonmagnetic cylindrical body carrying time-
varying current: 1-infinitely thin perfectly insulating interface

Now, the time variable magnetic field in the whole body pro-
duced by current i(¢) can be described by the well-known partial
differential equation of parabolic type for magnetic vector poten-
tial A (that also exhibits only one nonzero component 4. in the
z-direction) in the form

in the plate is then given by formula A A A
: +;7731ﬂﬂ;:7ﬂﬂlexls (14)
2 2 at 2
Jos = 7E = — yacurlT (I ox 9y
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It is obvious that equations (13) and (14) are quite analogous.
The same holds for the derived quantities: in case of the electric
vector potential 7' we have

T, oT.

‘I,\,md = Ya - ‘Iv.md = VYax_

15
ady ax (13)

while in case of the electric vector potential 4 we analogously
obtain
0A, JA,
B, = ay,vi ER (16)
This analogy results in the fact that the indicated linear problem
described in terms of the electric vector potential 7., can easily be
solved by any software working with the magnetic vector potential
A. (while the codes working with the magnetic vector potential A
abound, practically no professional code - except for user’s pro-
grams - works with the electric vector potential 7). We can proceed
in the following way:
e First we model the arrangement in Fig. 4. Then we substitute

z.ext

19
the value —
0

for J.

Zext and put A.(I, 1) = 0.

o After computing the distribution of A, =~ T using (14), we cal-
culate the distribution of B,, B, (16) and multiplying them by
Yo We immediately obtain the corresponding distribution of
Jina and J ;4.

x,in

5. Illustrative Example

Consider a thin circular aluminum plate (Fig. 5) of dimen-
sions 6 = 0.001 m, r,,, = 0.1 m and electrical conductivity

P = 3.4 X 107 S/m. The plate is exposed by an external magnetic
field B, (1) in a concentric circle of radius r;, = 0.02 m.

The time evolution of magnetic flux density B, .,(¢) is described
by periodic saw-like oscillations whose parameters follow from
Fig. 6.

Fig. 5 Thin aluminum circular plate exposed
by time-variable magnetic field

The aim of the solution is to determine the spatial and tempo-
ral distribution (module of the corresponding vector) of the induced

de, ext(t)/dt

[EE g g ) R

-2x10° T/s

Fig. 6 Time evolution of magnetic flux density B, (1) and its time
derivative (f = 1000 Hz, 1, = 0.001 s, B =1 T)

current density J,;,q4(r) (¢ denoting the circumferential direc-
tion) and volumetric Joule losses w(r,).

All the results presented in the following figures correspond
to the situation in the 10 period, which practically means the
steady state (with one exception that will be discussed later).

The orientation of the induced current density J;,4(r,¢) =
= 9o/ ina(11) in the period is obvious from Figs. 7a, 7b. It is con-
nected with the change of sign of the time derivative dB, .,,(1)/dt,
see Fig. 6.

The time evolution of module J,, ;,4(r,7) along different radii
of the plate is depicted in Fig. 8. The highest values are on the
circle of r = r,;, = 0.02 m, i.e., along the boundary of the domain
exposed by the external magnetic field B, ., (7). But not too far
from this boundary, for example along the radii » = 0.015 m or
r = 0.025 m, its values are significantly lower.

Fig. 7a Distribution of the induced current density J;,4(r,t)
in the plate in the first half of the period
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Fig. 7b Distribution of the induced current density J;,(,t)
in the plate in the second half of the period
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Fig. 8 Time evolution of J,,;,4(r.t) for three various radii of the plate

within the 10" period ( being the relative time in this period)
L-r=0015m1L -r=0.02m1L - r=0.025 m

The distribution of module J,, ;,4(r.7) of vector J;4 along the
radius r of the plate at different time levels of the 10™ period,
depicted in Fig. 9, also confirms the above conclusions. The figure
shows that the highest values of the induced current density occur
just on the radius r = r;, = 0.02 m, i.e., on the external bound-
ary of the area exposed by the magnetic flux density B, (7).
These values vary with time, similarly as the mentioned magnetic

flux density.

The distribution of the volumetric Joule losses w;;4(r.7) along
different radii of the plate within the 10t period (depicted in Fig.
10) also confirms the above statements. The highest losses are also
produced on radius r = r.;, = 0.02. On the other hand, observ-
able is there certain disproportion between the value wy; 4(r =
= 0.02, /1, = 0.5) and other value w; ;,,4(r = 0.02, #/1, = 1),
where /1, is relative time in the period of length ,,. This is prob-
ably connected with the asymmetry of the distribution of J,;,4(7,1)
(see Fig. 8). It is obvious that the 10" period is not yet the ideal
steady state.
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Fig. 9 Time evolution of J,,;,4(.t) for three various radii
of the plate within the 10™ period
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Fig. 10 Time evolution of volumetric Joule losses
Wy ina(1:0) for three various radii of the plate within the 1 0™ period
(t/t, being the relative time in this period)
L-r=0015m1Il -r=002m 1l -r=0.025m

6. Conclusion

Electric vector potential seems to be a powerful tool for model-
ing induction heating in linear systems characterized by geometri-
cally incommensurable elements, because it allows handling specific
3D arrangements as 2D problems. Another advantage consists in
the formal similarity of equations for the electric vector potential
and magnetic vector potential, which makes possible to use clas-
sical FEM codes for numerical computation of such tasks.

Next work in the field will be aimed at the following problems:

e Application of the method in case that the external magnetic
field is generally rotational.

e Model of heating taking into account the temperature variations
of physical parameters of the system.

® Modeling of the whole problem in the hard-coupled formulation
(heating of the plate affects its electrical conductivity) together
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with the thermoelastic changes (leading to small variations of Acknowledgement
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