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OPTIMIZATION OF THIN SHELL STRUCTURES USING

FSD ALGORITHMS

The paper presents a theoretical and numerical study of the efficiency of the fully stress design (FSD) algorithm in the case of thin shell
finite elements. Relation between membrane forces, bending moments and the element thickness is analysed by means of numerical tests. Sub-
sequent numerical testing and a new iterative algoritm to providing the rapid convergence of the optimizing process is proposed.
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1. Introduction

Structural optimization and development of new optimizing
methods have been topical problems for several decades. At the
present time the current issues are problems which have global
character such as ecology, energetic sources, mineral and natural
wealth, effectiveness of production and so on. Optimization process
is used in all fields participating in development or innovation of
technical devices and solutions. At the present time optimization
and innovation are inseparable parts of every existing or devel-
oped engineering work analysed by means of computational tech-
nique [1].

Expansion of computational technique allowed putting quali-
tatively new approaches in designing machines and appliances into
practice. The problem of proper designing and constructing of
machines gets new dimensions and wide scope for solving other
unsolved problems by establishing computers and consequent cre-
ating and developing corresponding software. An optimized design
is comprehended as a technically realizable design of structure
which is the best from all possible designs for a given goal [2].

Optimization of mechanical systems combines numerical math-
ematics and engineering mechanics. It is used in applications in
civil engineering, mechanical engineering, automotive and ship-build-
ing industry, and so on. It made the biggest progress in last thirty
years thanks to utilizing very fast numerical computers and com-
puter graphics. When choosing cost, weight of structure or maxi-
mum power at a limited cost as a design criterion, the importance
of optimization is evident.

The main task for a designer is still to propose dimensions of
the structure properly with respect to its minimal weight, proper
geometry, or some dynamical properties. The main goal is to spare
material and find the best solution from a constructional point of
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view as well as the view of utilization of material and technologies

[1].

The effort to create an optimal structure is not new, of course,
but using optimization approaches in practical work of a designer
can be achieved only by utilizing numerical methods and a power-
ful computational technique. Numerical methods are forcing out
analytical methods which are time-consuming and improper for
a lot of practical problems [3, 4].

Today we expect that designed objects will be optimally bal-
anced in term of entire life cycle, i.e. projecting, manufacturing,
running, maintaining and liquidating. The mentioned process relates
mainly with economic aspects of each stage. Achieving this goal
is very difficult, because a designer is usually met with contradictory
demands related to individual stages of the mentioned life cycle of
a designed object [4].

First formulations of optimization problems in the form of
mathematical programming have been occurring approximately
since1960. One of the pioneers who significantly influenced the
development of the optimal designing of constructions of machines
and their components, was undoubtedly Schmit. He linked opti-
mization methods with a new and progressive computational
method at that time - the finite element method as one of the first.
At that time, the weight of a monitored object or some strength
condition was the objective function. Optimization process was
gradually improving by adding other limiting conditions. In the
second half of the last century other works of similar nature, which
extended options in the field of optimal designing of parameters of
machines and their components into automated approaches
occurred. We can not omit works of Kirch, Morrow, or Gallagher.
Plenty of effective approaches were designed. They were based not
only on a purely mathematical comprehension of optimization
problem, but also a little bit non-traditional or unaccustomed appro-
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aches which play an important role in solving various technical
problems were utilized. These approaches use some of the basic
principles of mechanics. For example, the method which is known
as the fully stress design (FSD), originated from the idea of inde-
pendence of axial forces in statically determinate truss structures.
Its application is useful mainly thanks to its effectiveness. However,
it is limited only to problems of strength dimensioning and it turned
out to be a certain disadvantage in creating universal program sys-
tems. In this article theory of FSD will be described and applied spe-
cially for thin shell structures in spite of its lower universality [2, 5].

2. Stress Calculation of thin Shellfinite Element

We will focus on well-known shell finite elements (Kirchhoff’s
or Mindlin’s formulation) [1, 6, 7, 8], mainly on the stress calcu-
lation. The stiffness parameters depend on material constants and
element geometry, mainly on its thickness. The stress calculation
process is based on the expression of the jth element membrane
forces and bending moments (without shear forces) [6, 9], i.e.
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The auxiliary matrices I, and I, can be calculated only using
the numerical approach. Further details about E,,, E,, D, B,,, B,,
u,, and ¢ are presented in [9]. The extreme stress values can be
expected at the top or at the bottom surface. Generally, it means
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for the bottom element surface. Generally, the “top” or “bottom”
von Mises stresses may be calculated from relations [10]
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O} oy 0 0 1/ 0 0 6/t We will apply the FSD on a thin shell finite element. The thick-
F, ness of element ¢, will be considered to be a design variable and
F, (3) | the iterative relation will be given by [1, 2]
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From this equation we obtain the well-known iterative rela- | [(1 /t,.)(k), 0, ]. From the numerical mathematical point of view we
tion (10). The mentioned geometric interpretation shows that | are speaking about Regula Falsi method (method of chords-
the new estimation t,-“‘ﬂ) is approximated from points [0,0] and | secants).
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Fig. 1 Geometric interpretation of “classic” FSD Fig. 2 Geometric interpretation of “new” FSD

Fig. 3 One-sided fixed testing beam Fig. 4 Two-sided fixed testing beam
p = 0.05 MPa p = 0.05 MPa
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Fig. 5 Relation F,, - t, for element 84, Fig. 6 Relation M,,, - 1, for element 84 for
Jort; = 20 mm - one-sided fixed beam t, = 20 mm - two-sided fixed beam
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On the basis of experiences with classical relation (10), the
authors proposed two new computational algorithms. The first one
arises from the idea of approximation of new solution from the
previous two solutions which leads to the method which is very
similar to Newton’s tangent method. Geometric interpretation of
the method is shown in Fig. 2. Starting from the similarity of tri-
angles ABC and BDE we will get
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and after modification we obtain the following iterative relation

(k4 1) ©w o,— oV ® (k1)
I s N IC
i i 0; o o‘r_eq i i
New estimation (1/ t,-)“‘+ D results from the approximation of
points [(1/t)* Vo~ P] and [(1/2)°, o.%’]. The introduced
computational procedure is applicable also for truss, beam and shell

finite elements.

The second proposed algorithm is suitable especially for shell
finite elements.

It arises from the numerical study of effect of element thickness
change on internal forces and moments [1]. The numerical analy-
ses (tests) series was realized and it clearly proved the propriety
of approximation of internal forces (moments). Two examples were
tested (Figs. 3, 4). The dependence of force (moment) vs. element
thickness is illustrated in Figs. (5, 6).

The numerical tests showed that the assumption of constant
internal forces and moments per unit length £, F,,., F\,, M,.., M, ,,
M., in thin shells can cause troubles with convergence of solution
and algorithms efficiency. This problem can be eliminated by the
linear approximation of dependence between the mentioned inter-
nal forces per unit length and inverse value of element thickness
t; (more details in e.g. [1] and Fig. 7). Next, we will assume that
for ¢, — o expression (1/¢;) ~ 0 and an internal force (moment) per
unit length 7— 0. So, then the final approximation relation will be
given by
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where k is the number of iteration step, in which we find a new
value of 7**'1 from discrete design variables interval, for which
we will predict internal force quantities per unit length f;,f‘,zg) =
= [Fo By By My M, Mxy]Tand von Mises stress o,,,. Vector
¥ is the actual vector of internal forces and moments determined
from FEM analysis in k-th iteration step, ¥ is the value of design
variable, for which FEM analysis in k-th iteration step was per-
formed. Using (5) and (6) we can calculate the approximated
value of equivalent stress in (k+ 1)-th iteration step as follows
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The mentioned approximation can decrease the number of
iteration steps.
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Fig. 7 Principle of the linear approximation of T(1/t)

4. Comparison Study of the Proposed Algorithms

The presented computational algorithms were tested and com-
pared on a cranked beam (Fig. 8). Four-node thin shell isoparamet-
ric finite elements were used for this testing mechanical problem.
The number of elements was 5462 and number of nodes was 5739.
The material parameters used: Young’s modulus £ = 2.1-10° MPa
and Poisson’s ratio ¢ = 0.3. The boundary conditions were defined
as follows
- forces => pressure p = 0.05MPa (Fig. 8, magenta part),

- displacements => zero displacement on marked areas (Fig. 8,
green part).

Three optimizing variables were selected for the process of
optimization - thicknesses of flanges and web (See Fig. 9 - blue,
green and red parts). The maximum design stress considered o, =
= 120 MPa. Vector ¢,,,,, = [40,40,40] mm was suggested as the
start point and discrete design variables were chosen from inter-
val (8, 40) mm with increment of 1 mm. The optimizing process
was terminated when the following convergence conditions were
fulfilled
- stress convergence condition

0, — 0;
—1<0.2; 0,—0,>0,

L

- design variable convergence condition
PIOJIER)

<4 <0.05; 0,—0,>0.
1

i
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Fig. 8 Force and displacement boundary conditions Fig. 9 Optimizing groups identification
red - I*' design variable
green - 2" design variable
blue - 3 design variable
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Fig. 10 History of stress convergence for I° algorithm Fig. 11 History of thickness convergence for I*' algorithm
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Fig. 12 History of stress convergence for 2" algorithm Fig. 13 History of thickness convergence for 2" algorithm
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Fig. 14 History of stress convergence for 3 algorithm

The results of solution are summarized into Tables 1, 2 and
Figures 10-15. Graphic presentation shows that classic FSD algo-
rithm does not have to converge necessarily and in the case of the
shell computational model the discrete optimization can be incon-
venient. Other two presented algorithms have perspective and they
converge very well. For problems with lower number of optimiz-
ing variables it is better to apply algorithm No. 2. Experiences of
the authors indicate that the third algorithm is more suitable for
problems with a higher number of optimizing variables (more
than 10).
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mim]

Fig. 15 History of thickness convergence for 3 algorithm

Table 2
Algorithm no. 3
Iter. t 1, t; | Stress_I | Stress_2 | Stress_3 | Weight
No. | [mm] | [mm] | [mm]| [MPa] | [MPa] | [MPa] [kg]

1 40 40 40 45.1 22.6 66.2 660

2 25 23 33 72.6 39.0 91.7 441
3 20 16 31 90.7 S1.5 110.1 363
4 18 12 31 100.7 60.2 109.8 329
5 17 10 31 106.5 70.2 109.4 313
6 17 9 31 106.4 73.9 109.3 308
1 16 8 30 113.2 79.8 116.8 291

Table 1
Algorithm no. 2
Iter. t t t; | Stress_I | Stress_2 | Stress_3 [ Weight
No. | [mm] | [mm] | [mm] | [MPa] | [MPa] | [MPa] [kg]

1 40 40 40 45.2 22.6 66.2 660

2 25 23 33 72.6 39.0 91.7 441

3 16 8 30 113.2 79.8 116.8 291

5. Conclusion

Our paper deals with the theoretical aspects and numerical
realization of three fully stress optimizing algorithms focusing on
shell finite elements models. The presented computational proce-
dures were inbuilt into MATLAB’s software module MAT_FSD
which cooperates with FE software ADINA. Testing examples
support the authors’ considerations about the effectiveness of the
proposed method.
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