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COMMINICTIONS

Ivana Pobocikova - Zuzana Sedliackova *

THE LEAST SQUARE AND THE WEIGHTED LEAST SQUARE
METHODS FOR ESTIMATING THE WEIBULL DISTRIBUTION
PARAMETERS - A COMPARATIVE STUDY

In this paper we study the performance of the least square method and the weighted least square method for estimating the Weibull dis-
tribution parameters. In engineering practice these methods are commonly used due to their simplicity. The estimates of the parameters can be
calculated easily by the closed-form formula. We consider three estimators of the cumulative distribution function and the weight factor proposed
by Bergman (1986). The methods are compared in terms of the root mean square error and sample size. The comparison is based on the Monte
Carlo simulation. The comparison shows that the weight factor improves the accuracy of the estimation the Weibull distribution parameters.
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1. Introduction

The Weibull distribution is one of the widely used distributions
in engineering practice. It is named after Walodi Weibull (1887-
1979), who popularized its use in the theory of reliability, espe-
cially for metallurgical failure models. Moreover, the Weibull dis-
tribution is useful for description of the life time of the machine
components, for description of mechanical properties of the mate-
rials as fatigue of materials and strength of materials.

We consider the two parameter Weibull distribution. The prob-
ability density function of the Weibull distribution with parame-
ters ¢ > 0 and 6 > 0, abbreviated W(c, 0), is given by

0= el (3

where x > 0, c is the shape parameter and 0 is the scale parameter.

The cumulative distribution function of the Weibull distribu-
tion is

Flx)=1- eXp(-(%)c), x>0, (1)
The mean ¢ and the variance o> of the Weibull distribution are

u= 6F(l +%>

ot = 62[F(1 +2) -1+ %)]

where ['(a) is the gamma function defined by F(a) = f “x ey,
a>0. !
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The failure rate function of the Weibull distribution is given by

H(x) = —x*".

Fig. 1 shows the effect of the shape parameter ¢ on the density
function for different values ¢ and 6 = 1. Fig. 2. shows the effect of
the scale parameter 0 on the density function for different values
dand c = 2.

In this paper we study the performance of the methods for
estimating the Weibull distribution parameters ¢ and o. The esti-
mates of the parameters ¢ and ¢ can be obtained in more ways.
The commonly used methods are the maximum likelihood method
(MLM), the method of moments (MOM), the least square method
(LSM) and the weighted least square method (WLSM). The MLM
is the most popular for its efficiency and good properties, but the
calculation is complicated. The estimates of the parameters can be
obtained only numerically. Several authors have studied and com-
pared performance of the methods for estimating the Weibull dis-
tribution parameters, e. g. Bergman [1], Chu and Ke [2], Faucher
and Tyson [3], Lu, Chen and Wu [4], Trustrum and Jayatilaka [5],
Wu, Zhou and Li [6], Zerda [7].

Here, we consider the least square method (LSM) and the
weighted least square method (WLSM), each with three estimators
of the cumulative distribution function F(x). In engineering prac-
tice these methods are commonly used due to their simplicity. The
estimates of the parameters can be calculated easily by the closed-
form formula. The methods are compared using the Monte Carlo
simulation. The comparison is based on the root mean square error
(RMSE) and the sample size n. Based on the simulation study we
recommend the methods which have better performance.
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Fig. 1 Shows the effect of the shape parameter ¢ on the density
function for different values ¢ and 6 = 1

2. Estimation of the parameters of the
Weibull distribution

In this section we introduce the methods for estimating the
Weibull distribution parameters. The estimates of the parameters
cand ¢ denote ¢ and 4, respectively. Let X, X, ..., X, be a random
sample of size n from the Weibull distribution W(c, ¢) and let x,,
X, ..., X, be a realization of a random sample.

Least square method

Now, the cumulative distribution function (1) will be trans-
formed to a linear function. From (1) by two logarithmic calcula-
tions we obtain

In[—In(1 — Fx))] = clnx — cIno )

Let Y = In[-In(1 — FAx))l, X =clnx, f;, = cand f, =
= — ¢ In¢. Then the equation (2) can be written as

Y=p5X+P5

Now let Xy, X5, ..., X,,) be the order statistics of X}, Xy, ...,

X, and let x(;, < x5y < ... < X, be observed ordered observa-
tions. To estimate the values of the cumulative distribution func-

tion F(x) we can use the folloving methods

F (x0) = ﬁ (the mean rank) 3)
- i — 0.5
Flxy) ===, (4)

. i—0.3

Flx) = ~Toa (the median rank) (35)
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Fig. 2 Shows the effect of the scale parameter 6 on the density
function for different values 6 and ¢ = 2

. cth -
where i denotes the i smallest value of X, X2), or Xy, § = 1,
2, vy N

The estimates ﬁo and ﬁl of the regression parameters f, and
B, minimize the function

n

Q(Bo: Bl) = Z(Y: —B— 51)(1)2 =

i=1
= 2.(Y — By — Bilnx)) .
i=1

Therefore, the estimates ﬁo and , of the parameters f, and 5,
are given by

nilnx(‘)ln[— ln(l —F (x(l)))] - iz’llnx(,.) illn[— ln(l —F (x(l)))]

~ A=l im im
¢=h 3 . :
nyIn’x; — (Zlnxm)
i=1 i=1

R 1 . e
BO = Z;ln[— ln(l - F(X(,))):l - C;;lnxU) .
The estimate d of the parameter d is given by

. B iln[_ ln(l - F(X(,)))] - éilnX(‘)
o= exp(— é“) = exp|—— n = .

cn

Weighted least square method
We suppose that the estimates f, and j, of the regression
parameters f3, and £, minimize the function

(BB = gw Y, — B, — BX) =
= gwi <Y1 — B, — b lnx(,.))z
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where w; is the weight factor, i = 1, 2, ... n. Therefore, the esti-
mates ﬁo and ﬁl of the parameters /i, and ff, and are given by

To compare the performance of the various methods we
compute the sample root mean square error (RMSE) defined by

Zw Zw Inx, )ln[ ln(l — F(x ))] Zw Inx,, Zw ln[— In 1 — ))]

=B, =

;W,v ;wi In’x;) — (;w In x(,)>

Zw ln[— In 1 — ] — cZw Inx;,

=

ZWI’

i=1
Then the estimate d of the parameter 0 is given by
Zwiln[— ln(l —F (x(,)))] — é) w,Inx,
i=1 i=1

exw,
i=1

In this paper we use the weight factor proposed by Bergman

(1]

5:exp—

=0 F)n( = Fe))| =12

3. Monte Carlo simulation

We generate by the Monte Carlo simulation the random samples
from the Weibull distribution and compare the performance of the
methods for estimating the Weibull distribution parameters men-
tioned above. In simulation study we consider the LSM and the
WLSM each with three methods for estimating the cumulative
distribution function. Thus together we compare six methods. We
denote the methods with the estimators of the cumulative distribu-
tion function (3) as LSM_1, WLSM_1, with (4) as LSM_2,
WLSM_2 and with (5) as LSM_3, WLSM_3.

We consider sample sizes n = 5 to 100, 6 = 1 and several
values of the parameters ¢ = 0.5, 1.5, 2.5 representing decreasing,
increasing and concave, increasing and convex failure rate func-
tions respectively. All possible combinations of the parameters c,
0 and sample sizes n are considered. For each combination ¢, 0
and n we generate by the Monte Carlo simulation N = 5000
random samples from the Weibull distribution. For each of six
methods we obtain 5000 estimates ¢;, ¢,, ..., €590 Of the parameter
¢ and 5000 estimates 31, 32, 35000 of the parameter 0. Then we
compute for each method the sample means ¢, d and the sample
variances s2, 52, i. e.

1 5000 5000

€= 5000,.:210‘" 0= 500026”

5000 5000
a1 PR |
C) , S5

. N <2
= G999 26 499920~ 0

s

5000,

5000/= 2[

The estimates with smaller variance and RMSE are prefered.
The simulations and the calculation are performed in the Matlab
system.

RMSE = +(6.—9)].

4. Comparison of the methods

In this section we summarize the performance of the methods
for estimating the Weibull distribution parameters. The methods
are compared in terms of the RMSE and sample size n.

The results of the comparison for selected sample sizes n = 5,
10, 30, 50, 100 are summarized in Tables 1, 2, 3. The tables show
the sample means, the sample variances and the sample RMSE.
Figures 3, 4, 5 show illustrative plots of the RMSE for n = 5 to 50
(left), for n = 50 to 100 (right).

It is evident that the RMSE of the least square method is in
many cases much larger than the RMSE of the weighted least square
method for the case studies in this paper. The weight factor improves
the accuracy of the estimation the Weibull distribution parameters.
When gets larger the RMSE of all methods tends to be smaller.

For the sample size n = 10 and for ¢ = 1.5, 2.5 the compari-
son shows that the RMSE of the LSM_1 is in many cases much
larger than the other methods. The LSM_2 and the LSM_3 are
comparable methods in many cases in terms of the RMSE. The
RMSE of the LSM_3 is slightly larger than the RMSE of the
LSM_2. The RMSE of the WLSM_2 is larger than the WLSM_1
and the WLSM_3. The RMSE of the WLSM_3 is slightly larger
than the RMSE of the WLSM_1, both methods are comparable
for n = 40. In general, the WLSM_1 provides the best estimates
of the Weibull distribution parameters than the other methods in
terms of the RMSE.

For the small sample size 5 = n < 10 and for ¢ = 1.5, 2.5 the
comparison shows that in general the RMSE of the WLSM_1 out-
performs the other methods. The RMSE of the LSM_1 is only
slightly larger than the RMSE of the WLSM_1. The LSM_1 pro-
vides good results in these cases.

For the sample size n = 10 and for ¢ = 0.5 the comparison
shows that in general the RMSE of the WLSM_2 outperforms the
other methods. The RMSE of the WLSM_3 is slightly larger than
the RMSE of the WLSM_2. The RMSE of the LSM_2 and the
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Simulation results of the parameter estimation Table 1 LSM 1 | 1.3653 | 1.0326 | 0.0676 | 0.0185 | 0.3245
for real parameters ¢ = 0.5, = 1 LSM_2 | 1.5126 | 1.0135 | 0.0801 | 0.0176 | 0.3131
B LSM_3 | 1.4447 | 1.0217 | 0.0743 | 0.0180 | 0.3095

Sample | \iowod | ¢ | 8 | 2 | 2 |mwse | |["7°| wismit| 14008 | 10162 | 00569 | 0.0181 | 02888
size WLSM_2 | 1.4853 | 1.0059 | 0.0677 | 0.0181 | 0.2932
LSM 1 | 0.4508 | 1.6745 | 0.0745 | 2.6689 | 1.7889 WLSM_3 | 1.4549 | 1.0099 | 0.0630 [ 0.0181 | 0.2885

LSM_2 | 0.6007 | 1.3947 | 0.1311 | 1.8255 | 1.4568 LSM_ 1 | 1.3945 | 10218 | 0.0433 | 0.0112 | 0.2570

i | LSML3 [ 05271 | 14977 | 01014 | 2.1039 | 1.5663 LsM 2 | 15022 | 1.0080 | 0.0485 | 0.0107 | 0.2435
ﬁgﬁ—; 8‘5‘2;2 122?8 8(1)(6)3 i fg;‘g; }22;‘2‘ o | LSM3 | 14532 | 10140 | 00462 | 00109 | 02438

- : : : : WLSM_1 | 1.4442 | 1.0083 | 0.0369 | 0.0110 | 0.2261

WLSM_3 | 0.4940 | 1.4555 | 0.0855 | 2.0588 | 1.5334 wLsM 2 | 1.4897 | 1.0022 | 0.0412 | 0.0110 | 02286

LSM 1 | 04363 | 1.3946 | 0.0205 | 0.9475 | 1.0619 WLSM_3 | 1.4716 | 1.0046 | 0.0394 | 0.0110 | 0.2264

LSM_2 | 053111 1.2439 1 0.0298 1 07336 | 0.9075 LSM_I | 14276 | 1.0155 | 0.0240 | 0.0054 | 0.1868

n=1o| LSM.3 | 04860 13034100252 1 08129 09645 LSM_2 | 14968 | 10065 | 0.0255 | 0.0053 | 0.1755
o o e o aaee [ ooria | | | = 100| LSM.3 | 14657 | 10104 | 0.0248 | 0.0053 | 0.1774

ol e : : : : WLSM_1 | 1.4711 | 1.0052 | 0.0200 | 0.0054 | 0.1619

WLSM_3 | 04734 | 12595 | 0.0226 | 0.7937 | 0.9403 WLSM_2 | 14938 | 1.0022 | 0.0211 | 0.0054 | 0.1628

LSM 1 | 04557 | 1.1618 | 0.0076 | 0.2252 | 0.5108 WLSM_3 | 1.4847 | 1.0034 | 0.0206 | 0.0054 | 0.1620

LSM_2 | 0.5048 | 1.0972 [ 0.0090 | 0.1957 | 0.4627
LSM_3 | 0.4822 | 1.1246 [ 0.0084 | 0.2078 | 0.4816

n =301 wism 1 | 04713 | 11046 | 0.0066 | 0.1984 | 0.4655
WLSM_2 | 0.4966 | 1.0721 [ 0.0079 | 0.1898 [ 0.4503 Simulation results of the parameter estimation Table 1
WLSM_3 | 0.4864 | 10847 | 0.0073 | 0.1930 | 04557 | | for real parameters ¢ = 2.5,5 = 1
LSM_I [ 04652 | 1.1087 | 00047 [ 0.1198 | 0.3708 | | P - - : ;
LSM 2 | 05011 | 1.0637 | 0.0053 | 0.1083 | 0.3430 TPE ] Method | @ 5 5 2 | RMSE
| LsM_3 | 0.4848 | 1.0831 | 0.0051 | 0.1131 | 0.3540
n =301 wrsm 1 | 04823 | 10640 | 0.0040 | 0.1108 | 0.3452 LSM_1 | 22223 | 1.0423 | 1.5070 | 0.0387 | 12745
WLSM_2 | 04976 | 1.0450 | 0.0045 | 0.1080 | 0.3383 LSM 2 | 2.9630 | 1.0048 | 2.6661 | 0.0361 | 1.7076
WLSM 3 | 04915 | 1.0524 | 0.0043 | 0.1091 | 0.3408 | LsM3 | 25993 | 10194 | 20564 | 0.0370 | 14503
WLSM_1 | 2.1367 | 1.0329 | 13909 | 0.0383 | 1.2498
LSM_1 1 04760 | 10563 | 0.0025 | 0.0533 | 0.2440 WLSM_2 | 27187 | 09975 | 2.4000 | 0.0377 | 1.5764
LWL ARl | LD ) LI (LOSOL ) (G215 WLSM 3 | 2.4459 | 10112 | 1.8685 | 0.0377 | 1.3816
- LSM 3 | 0.4888 | 1.0405 | 0.0026 | 0.0515 | 0.2363
n=1001 gy om 1 | 0.4898 | 1.0258 | 0.0022 | 0.0525 | 0.2355 LSM 1 | 21727 | 1.0325 | 0.5197 | 0.0197 | 0.8047
WLSM 2 | 0.4974 | 10166 | 0.0023 | 0.0519 | 0.2333 LSM 2 | 26437 | 1.0094 | 0.7517 | 0.0188 | 0.8894
WLSM_3 | 0.4944 | 10202 | 0.0023 | 00521 | 02341 | || _ | LSM_3 | 24194 | LOI8S | 0.6367 | 0.0191 | 08140

WLSM_1 [ 2.1559 | 1.0212 | 0.4450 | 0.0196 | 0.7637
WLSM_2 | 2.4961 | 1.0028 | 0.6570 | 0.0196 | 0.8225
WLSM_3 [ 2.3478 | 1.0100 | 0.5497 | 0.0195 | 0.7696

LSM_1 | 2.2736 | 1.0151 | 0.1894 | 0.0064 | 0.4973
Simulation results of the parameter estimation Table 2 LSM_2 | 2.5190 | 1.0038 | 0.2245 | 0.0062 | 0.4807
for real parameters ¢ = 1.5,0 = 1 LSM_3 | 2.4060 | 1.0086 [ 0.2082 | 0.0063 | 0.4727

=30\ WLsM_1 | 2.3494 | 10056 | 0.1656 | 0.0064 | 0.4412

Sample |\ od |z 5 2 2 | Ruse WLSM_2 | 2.4747 | 0.9994 | 0.1977 | 0.0064 | 0.4525
size ‘ WLSM_3 | 24243 | 1.0018 | 0.1839 | 0.0064 | 0.4427
LSM_1 | 13407 | 1.0925 | 0.7156 | 0.1192 | 0.9320 LSM_1 | 2.3228 | 1.0145 | 0.1193 | 0.0040 | 0.3935

LSM_2 | 17878 | 1.0277 | 1.2710 | 0.1060 | 1.2084 LSM_2 | 2.5024 | 1.0062 | 0.1332 | 0.0039 | 0.3703

pos | LSM3 | 1683 | 10527 | 09784 | 01107 | 10471 | | | LSM_3 | 24206 | 10098 | 0.1269 | 00039 | 03704
WLSM_I | 12914 | 1.0764 | 0.6761 | 0.1170 | 0.9178 WLSM_I | 2.4116 | 1.0065 | 0.0997 | 0.0039 | 0.3339
WLSM_2 | 1.6453 | 1.0164 | 1.1606 | 0.1095 | 1.1363 WLSM_2 | 24876 | 10029 | 0.1112 | 0.0040 | 0.3396
WLSM_3 | 14792 | 1.0394 | 0.9075 | 0.1117 | 1.0105 WLSM_3 | 2.4573 | 1.0043 | 0.1065 | 0.0040 | 0.3350
LSM_I | 1.2949 | 1.0598 | 0.1758 | 0.0564 | 0.5270 LSM_I | 2.3805 | 1.0082 | 0.0646 | 0.0019 | 0.2844

LSM_2 | 1.5759 | 10202 | 0.2545 | 0.0519 | 0.5590 LSM_2 | 24960 | 1.0028 | 0.0686 | 0.0019 | 0.2656

noqo| LSML3 | 14421\ 10363 102154 ) 0.0536 | 05232 | || | LSM_3 | 24441 | 1.0052 | 0.0669 | 00019 | 0.2682
WLSM_I | 1.2884 | 1.0413 | 0.1562 | 0.0554 | 0.5079 WLSM_LI | 24580 | 1.0021 | 0.0539 | 0.0019 | 0.2399
WLSM_2 | 14920 | 1.0108 | 0.2348 | 0.0542 | 0.5378 WLSM_2 | 24959 | 1.0003 | 0.0568 | 0.0019 | 0.2424
WLSM_3 | 1.4033 | 10226 | 0.1948 | 0.0545 | 0.5091 WLSM_3 | 2.4808 | 1.0010 | 0.0556 | 0.0019 | 0.2407
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Fig. 3 Root mean square error for real parameters ¢ = 0.5, 6 = 1
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Fig. 4 Root mean square error for real parameters ¢ = 1.5, 6 = 1
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Fig. 5 Root mean square error for real parameters ¢ = 2.5, 0 = 1
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WLSM_1 follow. The RMSE of the LSM_1 is in many cases
much larger than the other methods.

For the sample size 5 = n < 10 and for ¢ = 0.5 the RMSE of
the LSM_2 is only slightly larger than the RMSE of the WLSM_2.
The RMSE of the WLSM_3 and the LSM_3 follow. The RMSE of
the LSM_1 is much larger than the RMSE of the other methods.

5. Concluding remarks

In this paper we compared the performance of the methods
for estimating the Weibull distribution parameters in terms of the
RMSE and sample size n. The comparison was based on the Monte
Carlo simulation. The comparison shows that the weight factor
improves the accuracy of the estimation the Weibull distribution
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parameters. The WLSM_1 performs the best in terms of the RMSE
than the other methods for majority cases studied in this paper
and for all sample sizes, the WLSM_3 follows as the second good
choice. Except the case when ¢ = 0.5, the WLSM_2 performs to
be the best for all the sample sizes than the other methods. The
good choice is in this case for middle and large sample sizes the
WLSM_3.

The advantages of these recommended methods are: simple
derivation, easy calculation of the estimates of the parameters by the
closed-form formula. And so from this point of view these methods
are very useful for engineering practice.
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