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PROPORTIONALLY FAIRER PUBLIC SERVICE
SYSTEMS DESIGN

This paper focuses on the utilitarian solution of public service system design problem, obtained when maximising the sum of all utilities
and proportionally fair-like solution, taking into account proportional changes in individual utilities. As an archetypal example of the optimi-
sation problem, we are examining the weighted p-median problem, which is solved by the primary-dual based procedure. We use realistic large-
scale data describing the road network and spatial distribution of population. By comparing the resulting solutions, for selected range of
parameters, we evaluate how costly it is to consider fairness criteria in the service system design. As for integer problems the proportional fair-
ness scheme does not guarantee the existence of dominant optimal solution, we evaluate the close neighbourhood of obtained solutions. Based

on these analyses we draw conclusions on the price of (proportionally-like) fair solutions and their stability.
Keywords: Facility location, system optimum, proportional fairness, price of fairness.

1. Introduction

Designing public service systems, as for example, distribution
systems, emergency medical systems, or to decide on positions of
marshalling yards throughout the railway network, various types of
location and allocation models can be used [1]. In general, this
problem can be seen as an example of resource allocation problem,
with a central planner. Although all serviced customers typically
share the costs for system construction and its maintenance, not
all customers (citizens) are enjoying the same access to services.
Therefore the question to what extent is the resulting system design
fair is highly relevant. If the satisfaction level of customers with
a given situation can be estimated by a utility function, various
fairness schemes can be used to compare corresponding optimal
allocation strategies.

Typically these schemes are either aiming at the systems effi-
ciency or they are trying to achieve a certain level of fairness. Even-
tually, it is required to find a reasonable trade-off between them.
One of the most frequently discussed decision schemes, focusing
on the system efficiency, is the utilitarian solution obtained when
maximising the sum of all utilities. Such scheme does not include
any individual notion of fairness. Commonly used fairness schemes
are the max-min fair (MMF) scheme, sequentially maximising the
utilities of those who are the least well off and the proportionally
fair (PF) distribution compromising between the efficiency and the
fairness. When following the latter scheme, a transfer of resources
between two customers is favourable when the relative increase in
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the utility of one customer is larger than the corresponding aggre-
gated relative decrease in the utility of all other customers. Fairness
schemes have been thoroughly studied in many areas. For example,
MMF was discussed in the context of the set partitioning problem
[2] or flow problems [3]. PF was mainly used as a mechanism for
routing flows in communication networks [4].

Recently, simple measure, the price of fairness [5], has been
proposed and analytically studied on problems with compact and
convex utility set. Adopting this concept, the overall objective of
this paper is to numerically study the loss of the system efficiency,
when calculating close to PF solutions of the weighted p-median
problem.

2. Problem description

The weighted p-median problem [6] is one of the most basic
and important models for solving the problems related to the public
service design [1]. The locations of at maximum p,,,,, servers ser-
vicing the set of customers J are to be selected from the set of can-
didate locations /. Each customer j € J is serviced by one server
i € I. The decision on assigning the customer j to the server loca-
tion  is represented by the binary variable z;. The corresponding
utility is a function of the travelling distance d;; between the server
site / and the customer’s home j. Hereafter, we stipulate the utility
of the customer j with respect to the server location i to be u; =
= d}p + 1 — d;, where d),,. = max{d, : i € I} This allows

Department of Transportation Networks, Faculty of Management Science and Informatics, University of Zilina, Slovakia,

E-mail: lubos.buzna@fri.uniza.sk

D This choice of the utility function was mainly motivated by preserving the type of the relation between dy and uy as it is perceived by customers (the

closer is the server the larger is the utility of the customer). Alternatively,

asd’ .+ 1 value can be chosen sufficiently large positive number. However,

as the large values can be problematic when evaluating the results, we use the smallest possible values which make sure that u; > 0
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us to obtain the utilitarian solution Z;; of the weighted p-median
problem when optimising the following objective function:

SYSTEM(Z) = Y. > 'b,u,z,, (1)

iel jeJ
where b, is the number of customers occupying location ;.

For optimisation problems with convex and compact utility set,
the PF solution exists and can be found by maximising the product
of individual utilities of customers over set J [4]. Under these
assumptions it is equivalent to the maximising the sum of loga-
rithms of all utilities. Unfortunately, the weighted p-median problem
is discrete and thus the utility set does not fulfil these conditions.
Therefore the optimal solution Z, obtained by optimising the
objective function:

P(Z) = ZbJ 10g(zuuzu) - Z Z b/ log(u‘_,)z,_,, (2)

jeJ iel JjeJ i€l

should be seen as an approximate solution, which provides pro-
portionally fairer (but not necessarily the most fair) solution than
utilitarian solution?. Please note, that this formulation assumes for
every j only one z; variable taking value of 1. In order to compare
these two solutions, following reference [5], the price of propor-
tionally fairer solution can be defined as:

SYSTEM(Z,) — SYSTEM(Z,,)
PoF = 3)
SYSTEM(Z,)

3. Model formulation

To formulate the utility allocation problem, we make use of the
above introduced notation, where J represents the set of serviced
customers and / is the set of possible server locations.

The objective is to determine at most p,,,,. locations from the
set [ so that the sum of utilities (1) and the sum proportional util-
ities (2) perceived by each customer from the set J are maximum.
The location-allocation model of the problem can be can be formu-
lated by introducing following decision variables.

Variables y; € {0,1} model a decision on server location at
place i € I. The variable y, takes the value of 1 if a server is located
at ; and it takes the value of 0 otherwise. In addition, the allocation
variables z; € {0,1] for each i € I and j € J are introduced to
assign customer j to possible server location i (z; = 1). Then the
location-allocation model follows.

Maximise (1) or (2)
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Subjectto Y z;=1 forjEJ (4)
P
z;=y, fori€land jE€J (5)
2 9= P (6)
z;€101) fori€land jEJ %)
y,€[0,1] fori€ L (8)

In the above model, the allocation constraints (4) ensure that
each customer is assigned to exactly one possible server location.
Link-up constraints (5) enable to assign a customer to a possible
server location i only if a server is located at this location and con-
straint (6) limits the number of located servers.

Both models (1), (4)-(8) and (2), (4)-(8) can be easily refor-
mulated as the classical weighted p-median problem by using the
following rearrangement. We make use of the fact that both sets J
and [ are finite and we can define U™ as max{u;: i € I j € J}.
Denoting g; — U™ — u; as a nonnegative distance from j to
i and considering constraints (4) we can derive the relation:

Z Zb/uljzi/ =u™ Zb/‘ —u™ be + Z beu'jzij =

i€l jeJ jeJ jeJ iel jeJ
=u™ Zb/‘ - <Umax Zb/‘ ZZU' - Z Zh%%) =
jeJs jeJ i€l iel jeJ
=U™xb,— <Z b, (Umx - uu’)zrj) =
jes i€l jeJ
=u™ Zb/ - Z zquijzlj
jeJ iel jeJ

As the first item of the resulting expression is a constant, we
can obtain an optimal solution of (1), (4)-(8) by maximising the
second term only. The maximisation can be replaced by minimi-
sation by multiplying objective function by -1 and thus instead of
maximising (1) subject to (4)-(8) we can minimise (9) subject
(4)-(8), which is the classical weighted p-median problem.

Minimize Y, > b,q,z,, )
iel jeJ
The same adjustment can be done with the proportional utility
(2) by replacing u; with log(u;).

4. Numerical experiments

Taking an initial step in investigating the PoF for the public
service system design problems, we use three datasets describing
the road network and spatial distribution of population for three
selected large geographical areas (see Fig. 1). It is assumed that
all inhabitants are customers of the public service system. For each

2 As for discrete utility sets the transitivity property of dominance between various solutions does not have to hold, the existence of the most proportionally

fair solution is not guaranteed.

COMMUNICATIONS 1/2013 o 1)



COMMINICIONS

area we created two subsets of problems characterised by the size
of the set / (for more detail see caption of Fig. 2).

In Fig. 2 we varied the parameter p,,,, and calculated the
weighted p-median problem considering objective functions given
by Eq. (1) and Eq. (2), respectively. The weighted p-median problem
is solved by combining the Lagrangian relaxation of the constraint
limiting the number of located servers to p,,, with the primal-dual
procedure solving the uncapacitated facility location problem [7].
As the obtained results show, when evaluating both solutions by
using Eq. (3), surprisingly, we are getting very small difference

between them, finding PoF value close to value zero. The only one
significant exception are cases when p,,,. takes low values. Here
we are locating small number of servers and PoF is more sensitive
to the particular choice of sites. However, even here PoF exceeded
value 0.01 only in few cases.

As mentioned earlier, for discrete optimisation problems, opti-
mising the objective function given by Eq. (2) does not have to
necessarily result in finding the most proportionally fair solution.
Thus, not only for the utilitarian solution given by Eq. (1) but also
for the solution obtained by Eq. (2), we may expect that a replace-

Fig. 1 Examples of used datasets: (a) road network of Slovak Republic with |I| = 47; (b) joined road networks of six northern US states [7]
(lowa, Kansas, Minnesota, Nebraska, North Dakota and South Dakota) with |I| = 50; (c) joined road networks of six southern US states [8]
(Alabama, Georgia, Mississippi, North Carolina, South Carolina) with |I| = 51

0.015

0.01

PoF

0.005

0.01
0.0075

0.005

PoF

0.0025

0 50 100 150 200
P

max

2500 50

100 150 200
P P

2500 S0 100 150 200 250

max max

Fig. 2 Values of the price of fairness (PoF) obtained by evaluating Eq.(3) for solutions obtained by considering criteria SYSTEM(ZU)
and SYSTEM(ZP). (a) and (b) correspond to experiments with road network of Slovak Republic with |I| = 47 and |I| = 516, respectively; (c)
and (d) correspond to experiments with joined road networks of six northern US states with |I| = 50 and |I| = 500, respectively; and (e) and (f)
correspond to experiments with joined road networks of six southern US states with |I| = 51 and |I| = 499, respectively
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Fig. 3 Fraction of proportionally fairer neighbouring solutions obtained by swapping one occupied for one unoccupied server site.
To improve the readability of figures the inset shows a zoom of the region with tiny A values. The labels correspond to experiments
on different datasets organised similarly as in Fig. 2

ment of some located servers can result in (proportionally) fairer
situation. In order to quantify such tendency we evaluate the closest
neighbourhood of reached solutions. This neighbourhood is defined
as the set of all solutions, which can be obtained by swapping one
occupied server location for one empty server location. In Fig. 3
is evaluated the percentage of solutions which are proportionally
fairer than optimal solutions Z;,and Z,. The obtained results show
that solutions Z, have clearly smaller number of proportionally
fairer solutions in the close neighbourhood than solutions Z;,.
Thus, the results also confirm that from the point of view of PF
scheme it is sensible to apply objective function (2) to the weighted
p-median problem.

5. Conclusions

Applying PF criterion, known from the utility theory, and com-
paring it with utilitarian solution we evaluated numerically the price
of fairness for the weighted p-median problem. The obtained results
show:

- locally increased level of fairness when using PF criterion,
- and, surprisingly small price of fairness, although the number
of customers is very large.

These two main findings suggest that for real-world problems,
where the weighted p-median problem could be a relevant model-
ling tool, it can be relatively easy to improve the fairness of the
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system design as the (proportionally-like) fair allocation is close to
the efficient allocation. However, to be able to present practically
more relevant conclusions further steps are needed in several areas
and we need:

- to examine the sensitivity to input data (network topology, spatial
distribution of customers, etc.).
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- to construct and to investigate more natural utility functions, (this
will probably require to reformulate the problem considering neg-
ative utilities (costs)),

- to test more realistic models of public service systems (capacity
and time constraints, hierarchical systems, etc.),

- to compare other types of fairness criteria, e.g. MMF,
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