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BEAM-COLUMN RESISTANCE ACCORDING TO SLOVAK

STANDARD AND EUROCODES

The article deals with the verification of resistance of torsionally restrained hot-rolled beam-columns of H or I cross-sectional shape and
also of the perpendicular hollow cross-section subjected to the biaxial bending and axial compression. Results of analysis of the beam-column
resistances according to methods of former STN 73 1401 [1] and the current STN EN 1993-1-1 [2] are compared with results of numerical
approaches. The observed members are subjected to the normal force and to the transverse loads uniformly distributed along the length of
both axes. The cross-sections of HEB 300, IPE 300 and RHS 300x200x10 were chosen to compare obtained results.
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1. Introduction

Nowadays, the development of new materials creates
a competitive environment for the use of steel as a structural
material in constructions. High-strength concrete and reinforced
concrete cross-sections of high quality compete with steel with
their dimensions. Therefore, many specialists are searching to
improve the accuracy of design formulas for steel members,
especially for members subjected to the combined actions. The
beam-column subjected to combination of bending moments and
axial compression is an example of this problem. Therefore, the
possibility of using cross-sectional plastic reserve or improving
and more specifying the design approaches to verification of
beam-column resistance becomes more important. If the standard
prescriptions do not meet criteria of the optimal structural
design, then the determination of the structural resistance and
its verification need necessarily to be more precise and often
complex based on the numerical calculations using FEM models.

2. Analysis of beam-column behaviour
2.1. Analytical approach

Stability analysis of a beam-column has been done in the past
using solution of the relevant homogeneous differential equations.
The buckling resistance of initially deflected beam-column with
double symmetric constant cross-section, subjected to combined
constant axial compression and biaxial bending due to transverse
load uniformly distributed along the length of the both axes,

* Peter Janik, Josef Vican

could be described by the system of inhomogeneous differential
equations in accordance with [3]

Elyw(4) + N(W + WU>”+ [M,(e + 9())]”: q:
ELVY+N(v+v,)+[M,(6+6,)]=q,
ELOY—GLO" +i’N(6+6,) + M

’

g2y + q.2..)(0+0,)+[ M, (v+v.,) ]+
+HM.(w+w,)]=0

In the case of the torsionally restrained beam-column along its
length, i.e. the member whose effects of lateral-torsional buckling
are eliminated by the relevant supporting, and considering the
initial deflection in the direction of the y-y axis only, the system
of differential equations (1) can be rewritten into the following
elementary pair of independent differential equations, describing
the buckling resistance of beam-column respecting the above
mentioned cross-sectional shape and load

EI.wWY+Nw" = g.

ELVY+ N, +Vv")=q, @
where
E is the Young’s modulus of elasticity,
G is the shear modulus,
I, I is the second moment of area about the y-y or z-z axis,
respectively,
I, is the St. Venant torsional constant,
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Fig. 1 Simply supported beam-column subjected to the constant axial compression and uniformly distributed transverse load

I, is the warping torsional constant,

N is the normal compression force,

M, M, are the bending moments about the y-y and z-z axis,
respectively, induced by transverse loads,
is the cross-sectional polar radius of gyration around to
the centre of shear,

4y 4. are the transverse uniformly distributed loads in the
direction of the y-y or z-z axis, respectively,

v, is the initial deflection of a member in the direction of
the y-y axis,

v is the deflection increment of a member in the direction
of the y-y axis,

w is the deflection increment of a member in the direction
of the zz axis,

W, is the initial deflection of a member in the direction of
the z-z axis,

Zy» Zg.  are the distances of the applied transversal load from
the centre of shear measured in the direction of the y-y
or z-Z axis, respectively,

0, is the angle of the initial cross-sectional rotation of
a member about the x-x axis,

0 is the angle increment of cross-sectional rotation of

a member about the x-x axis.

Bending moments M, and M, depend on the type of transverse
load and usually have the non-constant shape. According to Fig.
1, the bending moments at the point C at a distance of x from
A (see Fig. 1) can be obtained by taking moments about C for the
segment of member A-C using formulas

B g-Lx _ q.x’
M, = Nw + 5 2
and (3)
M. = Nv+ Ny, + 22> 9%
Z o 2 2

The equations become even more inhomogeneous when
the initial imperfections are implemented into the system. The
member initial deflection of v, in the direction of the y-y axis
was considered to simulate the shape of the member equivalent
geometrical imperfection described by means of the sinusoidal
function as follows

Vo = eo.sin(7x/L) (4)

where the amplitude e, is defined according to the standard [2]
in the following form

.= 0(A—0,2)W.../A ()

and the imperfection factor ¢, depends on the cross-sectional
shape.

Using the differential expression for bending moment, the
equations (3) can be rewritten into the differential form [4] as
follows

2
W+ Uiw = quy<x7_%> with u4i = Ell‘
” y 2 L .
V4 v = glz(%—%>—ﬂ§en,zsm(%) (6)

with @3 = %

The final solutions of the above described differential
equations can be obtained using homogenous boundary condition,
w =V =0 for x =0 and for x = L, in the form as follows

L
9. (tan'uTlsin,ul)H- cos Ui x — 1>+

w= N

+ 26]& (x*—xL) o
__ 9 :u2L : _ >

v—N/d(tan 5 Sinfd>X + cos flox 1)+

qy Ne X

+ N (x2 —xL)+Nm7stin<T>
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where N.,.. = 71> EI/L? is the Euler flexural buckling force.

The displacement at any point of the member can be
calculated by inserting appropriate values of N, ¢ and x in these
equations. The maximum deflections and maximum bending
moment are in the mid-span of the observed beam-column and
can be expressed by the following formulas

Wiy = Nik(sec ‘uzlL - 1)— 61815 and ®)
Moy = qﬁly<sec’uT'L - )
Vimare = ]\;]/i§<sec ’uzzL = 1)— qu]f; + 7]\/0]:{611]\, and
Mo, = qy]glz(sec ’uzzL - 1)+ 1 fe”z’if

Ner.

Then, the maximum stress in the mid-span of the beam-
column can be obtained using the relation

Mmax,z
Wel,z

Mmax,y
W, (€]

_N
O =4 + +

where W,,, W, are the elastic sectional modulus about the y-y or

7-7 axis, respectively.

2.2. Numerical approach

Due to the complexity of analytical solutions of system
of inhomogeneous differential equations according to (1), the
numerical analyses are used to obtain results. Numerical models
are usually created using computer software based on FEM.
In this case the Ansys-Workbench was used. Numerical model
developed in this environment consists of one dimensional
finite element BEAM 188 (see Fig. 2). The element is based on
Timoshenko’s beam theory including shear-deformation effects.
The unrestrained warping of cross-section or restrained one
respectively can be taken into account. This element is a linear,
quadratic, or cubic two-node beam element in 3D. BEAM188
has six or seven degrees of freedom at each node. These include
translations in the X, y, and z directions and rotations about the
X, y, and z directions. The seventh degree of freedom - warping
magnitude, is optional. This element is well-suitable for linear
large rotation and/or large deflection nonlinear applications.

The sinus function was chosen in accordance with [2] to
simulate the initial shape of bow imperfection of the member
in the direction of the y-y axis. Its amplitude was taken in
compliance with recommendation for flexural buckling in [2].
In the case of applied numerical model, the boundary conditions
Rot,x = 0 were considered, allowing for torsionally restrained
member with disabled rotation about the x-axis.

Ideal elastic-plastic material model was chosen. Material
characteristics were used according to  standard recommendations [2].
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Fig. 2 The numerical model

To verify the described numerical model, the analytical
solution of the problem derived in section 2.1 was used. The
results of maximum stresses calculated by means of formula
(9) and using the above mentioned numerical model for beam-
column of IPE 300 cross-section having slenderness of A.=10
and 1.5 are compared in Table 1. The comparison is presented
in the form of ratio of results of numerical calculations to results
obtained using derived analytical solutions. The comparison
presented in Table 1 is statistically evaluated to determine the
error of the numerical approach.

Statistically evaluated comparisons of analytical
calculations with results of numerical ones Table 1

A 1 L5

Mean value 1.0086 1.0087

Maximum value 1.0160 1.0130

Minimum value 1.0041 1.0043
X calculations 27 27

The comparison presented in Table 1 shows a very good
accordance insomuch that above described numerical model can
be applied for parametric numerical study of the beam-column
resistance determination. It was necessary to evaluate a large
number of combinations of normal forces and transverse loads
to create compact resistance surface of the observed members.
Therefore, the following input values were taken into account for
numerical calculations in frame of parametric study:

- yield strength of 235 MPa, the Young’s modulus of elasticity of
210 GPa, the zero modulus of strain hardening and the Poisson
ratio of 0.3;

- the amplitude of the initial bow imperfection was taken
according to formula ¢,.= of, (1 — O,2)Wez,z/A (A is the
cross-sectional area of a member) with o; = 0.49 for HEB 300,
oy = 0.34 for IPE 300 and o, = 0.21 for RHS 300x200x10;

- the geometric nonlinearity and torsionally restrained member
with condition Rot,x = 0 was considered;
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- cross-sectional characteristics of thin-walled sections were
taken according to the table from [5].

2.3. Standard approach according to STN 73 1401

The standard procedures are used for assessment of members
to achieve the greater extent. The resistance of member subjected
to the combined biaxial bending and axial compression was
verified by means of formulas according to STN 73 1401 [1].
The latest revision of this standard was valid from 23.03.1998.
This latest version of the standard was applied in our country till
01.04.2010, when it was replaced, as well as the other Slovak
structural standards, by Eurocodes.

In the parametric study, the analyses of the resistance of
members with cross-sections of Class 1 and 2 were performed.
Member not susceptible to torsional deformations with cross-
sections of Class 1 or 2, respectively, shall satisfy the following
single condition in accordance with [1]

N Ed k y M y.Ed

XoislNee/ Y Y ir Moy (10)
zMz,Ed

+ MzJek/'}/Ml = 1’0

where

Ng, is the design compression force,

M, g, M,p,  are the design bending moments about the y-y or
7-Z axis, respectively,

Ny is the characteristic value of the resistance to
normal compression force,

Mz, Mg, are the characteristic values of the resistances
to bending moments about the y-y or z-z axis,
respectively,

k, k. are the interaction factors,

Ymin is the minimum of reduction factors due to flexural
buckling to y-y or z-z axis, respectively,

YT is the reduction factor for lateral-torsional buckling
(in this case y;;=1.0),

Yy is the partial safety factor for material.
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Fig. 3 Comparison of member resist)

2.4. Standard approach according to STN EN 1993-1-1

Set of Eurocodes for the design of building structures has
been successively implemented into the STN standard system
since 2005. Translations of European standards to individual
Slovak ones with the National Annexes were gradually published.

To verify resistance of the member subjected to combination
of biaxial bending and axial compression, two methods named
A and B are possible to apply according to standard [2].
A common form of equations for assessing the resistance of
member with cross-section of Class 1 or 2 respectively, subjected
to the axial compression and biaxial bending has the form as
follows:

NEJ My,Ed Mz,Ed <
XNl Y +ky XMl Y K el Yo 1,0
NEd + k M,vAEd + k Mz.Ed < 1 0 (11)
X-Ne! YV P XMy Y EMowed Y T

where the following designations are used in addition to ones

under relation (10)

k;;  are the interaction factors,

Xy X. are the reduction factors due to flexural buckling to y-y or
7-7 axis, respectively.

Methods A and B differ from each other by the approach to
calculating the interaction factors k;;. Equations for individual
interaction factors k;; were calibrated by means of many geometric
and material nonlinear computer simulations (GMNIA) based on
the finite element method, [6]. For practical design in Slovakia,
the utilization of method B was recommended in the National
Annex [7].

3. Comparison of approaches to verification of beam-
column resistance

The comparison of the results obtained using different
standard approaches to results of the numerical calculations is
shown in Figs. 3-8. The numerical values represent the size of the
third axis in the selected levels of Ny,/Ng,. Ratios M, /M, p, and
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M, /M, p, are shown on the horizontal and vertical graph axes.
Characteristic values of resistances without partial safety factor
yy; for material were considered as the standardized member
resistances for all normative approaches to compare the obtained
results of numerical calculations. Graphs are processed for non
dimensional slenderness Z:=1.0; 1.5 and 2.0.
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Fig. 4 Comparison of member resistance curves, A.=2.0 - HEB 300

The investigated member is subjected to the axial compression
and bending due to the uniformly distributed transverse load for
both axes of symmetry of the cross-section so that the shape of
the bending moment is parabolic. Calculations were considered
with torsionally restrained cross-section HEB 300 and IPE 300,
i.e. the effect of lateral-torsional buckling was neglected. The
cross-section of RHS 300x200x10 is not susceptible to torsional
deformations.

4. Conclusions

Conservative approach to the resistance verification
according to the standard [1] is evident from all the result’s
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Fig. 5 Comparison of member resist)
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comparisons. In accordance with this standard, the spatial display
creates approximately “planar resistance surface” connecting the
borderline cases lying on the axes of the graph.
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Fig. 6 Comparison of member resistance curves, A.=2.0 - IPE 300

Resulting isoclines of methods A and B show that the standard
[2] uses the plastic reserve of members more accurately. Surface
resistance of these approaches is already convex describing more
realistic beam-column resistance. Both methods for assessing the
combination of biaxial bending and axial compression according
to [2] describe the resistance of member with the closed cross-
section of RHS 300x200x10 better. In the cases of the higher
levels of normal forces, standardized approaches show reserve
of resistance compared to results of numerical calculations. If
members are subjected to the smaller bending moment M,, the
method A provides higher levels of the member resistance for
non-dimensional slenderness A. greater than 1.0 than numerical
calculations for open cross-sections IPE 300 and HEB 300.
Assessments of members with torsional restraints according to
method A are less suitable for members with non-dimensional
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Fig. 7 Comparison of member resistance curves, A:=1.0;1.5 - RHS 300x200x10
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&zmr:;:gvs the method B in Slovakia seems to be correct from this point of
- g view [8].
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