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RESTORATION OF DETERMINISTIC AND INTERFERENCE
DISTORTED SIGNALS AND IMAGES WITH USE OF THE
GENERALIZED SPECTRA BASED ON ORTHOGONAL

POLYNOMIALS AND FUNCTIONS

Restoration algorithms of signals and images on the basis of their generalized spectra in bases of orthogonal polynomials and functions
at absence and presence of random distortions have been examined. It is shown that in absence of hindrances the number of coefficients of
the generalized spectrum of a restored signal (image) is determined by the desired approximation error at use of one or another metrics of
functional space. If hindrances take place then there is an optimum number of coefficients of the generalized spectrum for signal (image)
restoration. Working data of the proposed algorithms for various types of useful signals have been illustrated.

Keywords: Signal and image restoration, generalized signal spectrum, orthogonal polynomials, Gauss quadrature formulas, approxima-
tion mean square error, maximum likelihood method, incomplete signal reception.

1. Introduction

One of the methods of increasing throughput of multimedia
data transmission, receiving and processing systems is optimization
and improvement of coding (decoding) procedures of a signal
source and redundancy reduction. At present two essentially differ-
ent approaches for information compression of signals and images
are used: 1) lossless compression; 2) controllable lossy compres-
sion [1, 2]. The first approach is based on principles of differential
pulse code modulation, Huffman entropy coding, Lempel-Ziv-Welch
method of repetitive chapter search on samples, as well as some
others and it cannot provide essential compression of a data flow.
More expedient is the coding procedure of a signal source with
controlled losses. Within the scope of this approach various linear
orthogonal transforms are applied: a) discrete cosine transform and
its updatings; b) wavelet-transform; ¢) discontinuous piecewise
constant function basis expansion (such as Walsh, Haar, S-trans-
formation, etc.), however all of them are not flawless [2]. It causes
need of new basic function search.

It is obvious that new algorithms of signal and image com-
pression should be optimized not only in respect of computational
burden reduction, complexity of hardware implementation but also
in statistical sense taking into account probabilistic nature of hin-
drances, messages and performance measures. This problem is so
severe under image transmission and processing as images have
sufficiently great information capacity. In the present work it is
shown that, as in [3, 4], the application of orthogonal polynomials
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or functions connected with them allows to receive effective, prac-
tically realizable procedures of signal and image restoration includ-
ing presence of random distortions.

2. Signal and image restoration without noise influence

As systems of orthogonal polynomials (functions), the follow-
ing polynomials (functions) can be chosen [5]

Legendre polynomials

1 d
() = oS ) M

Chebyshev polynomials of the first kind

(=2 & -
T,(x) = ———V1—x W(/l—x) , )

(2n)!

Hermite polynomials

H,(x) = (— 1)'exp(x?) a:” exp(—x?), 3)

Hermite functions

o, (x) = ;Hn (x)exp(— Lz) (4)
S22 2

etc. In Egs. (1)-(4) n is nonnegative integer.
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The generalized spectra C5, CZ, C#, C'# of the one-dimen-
sional signals s(x) specified on the interval x € [a,b] when using
(1)-(4) can be accordingly found as

»_2n+1p (b—a atb
cr="" fs< St )P,,(x)dx, (5)
cr = a+b _
¢ ? ®)
. 2. n=0;
T, [sm(x)]dx, a, {1’ £ 0;
b—a a+tb
cr = ( x+ )
2" n'[f 2

-H, (x)exp (—x2dx),

w4 (b—a athbh
c’ —fﬁs( Y x + 2 )qo,,(x)dx,

A>>1 N

Then in absence of hindrances the signal restoration operation
on the generalized spectrum will be written in the form

st = e (2, ), ®)
n=0 a

where {W,(x)} is one of the orthogonal function systems (1)-(4),
{C,] is generalized spectrum (5)-(7) corresponding to the basis
[¥,(x)}, y = 4 for Hermite polynomials (functions) (7) and y = 1
for Legendre and Chebyshev polynomials. Generalization of for-
mulas (5)-(8) on a two-dimensional case is obvious.

As the analysis showed, expansion coefficients (5)-(7) decrease
rapidly with increasing n for both continuous (differentiable and
nondifferentiable) and discontinuous signals. However for practi-
cal applications the calculation of the generalized spectra accord-
ing to the formulas (5)-(7) should be made numerically in most
cases. Thereupon it is of interest to use the expansion procedures
which minimize computing expenses. One of the possible ways for
creating such procedures is the use of Gauss quadrature formulas
of the maximum degree of precision [6]:

fs(x),o(x)dx = gﬂks(xk). 9)

Here x, are zeros of a polynomial of N-th order, p, is a weight
function for polynomial orthogonality [7], 4, are Christoffel
numbers, and integration is conducted on an orthogonality inter-
val of polynomials used in expancion. Special cases of Eq. (9) for
polynomials (1)-(4) have the appearance:

1. Gauss-Legendre formula:

f s(x)dx = Z/hs(xk)

k=0

(10)

where x, are zeros of equation Py(x) = 0, 4, = 2/(1 — x7[ Py(x,]%

2. Mehler (Gauss-Chebyshev) formula:

) B N—1
ﬁlﬁdx - ,;)/L{S(xk),

where x;, = cos[n(2k + 1)/2N] are zeros of Chebyshev polyno-
mial Ty(x), 4, = 7/ N.

(11)

3. Gauss-Hermite formula:
N—1

’/’:s(x)exp(*xz)dx = ;}Aks(xk),

where x, are zeros of equation Hy(x) = 0, 4,

JTH \(x)).

(12)

_ 2N+1MV§;/

Using (10)-(12) the formulas (5)-(7) for the generalized
signal spectra can be rewritten as

N—1

k:"m'

b +b (-
.S(Taxk-i- a B )Pn(xk),
Zsb—a ( (2k+1)>+a+b _
C = N & 2N 2
nn(2k+ 1)]
-COoS Nt
C:,:z'*"‘zv!‘* 1
n! k:o[HN(xk)] (15)
b— +b
s S ),
2’\1 n+3 N—1
C'" =N,/
g[ (x‘>] (16)

-s(xk ﬁ)Hﬂ (xk )

On the basis of Egs. (13)-(16) and similar expressions the
study of spectra for various signal models (differentiable, contin-
uous nondifferentiable and discontinuous) was conducted. As an
example in Table 1, coefficients C%, CT, %, ¢'# 0 < n < 20 cal-
culated according to formulas (13)-(16) for typical functions
s(x) = exp(—xz) (differentiable); s(x) =
(continuous nondifferentiable); s(x) = sgn(x), where sgn(x) = 1
if x = 0 and sgn(x) = —1 if x < 0 (discontinuous) are resulted.
In that table the values of mean square error & = o(N) [8]

2

1
0= b a-fa s(x) — ;C,,IV" (x) dx

of signal approximation on the basis of the generalized spectra
calculated at « = —1, b = 1 (orthogonality interval of polynomi-
als (1), (2)) and various N are specified. Here C, is one of the
coefficients CP CT CH C’H (13)-(16), and ¥ (x) is correspond-
ing polynomial (function) of n-th order (1)-(4).

(17)

From the Table 1 and conducted analysis including other
orthogonal bases there follows that for differentiable and contin-
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uous nondifferentiable signals the construction of the generalized
spectra on the basis of Hermite polynomials (3) or functions (4)
appears the most effective. Really, coefficients C’,f (15), C ’f,[ (16)
converge rapidly enough to zero with increasing n so mean square
error (17) becomes relatively small at N < 5-6. The use of Legendre
and Chebyshev polynomials can provide smaller extent of 6 (17)
in comparison with Hermite polynomials (functions). However
sets [C,,P], [C,{] can essentially exceed sets [Cf,’], [C’I,{] by number
of significant coefficients.

For discontinuous signals the Hermite polynomials (functions)
also provide the least number of significant coefficients of the gen-
eralized spectrum. However approximation mean square error (17)
received at their use reaches relatively large values. In this case the
construction of the generalized spectrum on the basis of Chebyshev
polynomials can appear to be expedient. Really, at loss by number
of coefficients in 2 times approximately in comparison with Hermite
series the accuracy gain of the signal approximation estimated
according to (17) can reach 3-3.5 times. Also it should be noted
that expansion coefficients calculated with the use of quadrature
formulas of the maximum degree of precision which have an order
less than 10™* can be omitted at construction of the generalized
spectrum of an analyzed signal. Besides, rate of convergence for
series (8) on orthogonal polynomials can be more rapid generally
than for basis of trigonometric functions and discrete cosine
transformation [2].

3. Signal and image restoration in the presence
of random distortions

As it has been established in the section 2 at restoration of the
deterministic signals and images by their generalized spectra the
number of restored signal (image) modes (coefficients of the gen-
eralized spectrum) is determined by the desired approximation
error at use of one or another metrics of functional space. It will
be shown below that the account of fluctuating noises actually
existing together with a useful signal leads to occurrence of optimum
number of modes which should be used for image restoration.

So, let the field

() =su(r) +a(r), r=(xy)

be received to the optical-electron converter’s input. Here s, is
observable useful signal for which the form and other characteris-
tics can be apriori unknown, #(r) is hindrance. Let us suppose that
the useful signal s,(r) can be presented as series

M M

50 (r) = 50 (63) = 2 D0 (1), (1)

m=0n=0

(13)

in one or another orthonormal function system {¢,, ,(x)}. Here
Con = [asu(xy)p,(x)@,(y) are expansion coefficients (general-
ized signal spectrum) and Q is area of orthogonality of basis

{9,()@, ("]
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Models of hindrances at optical and optoelectronic processing
of the information are in detail considered in [9, 10]. If a quantum
character of weak optical signals is not taken into consideration
and signal s,(r) is assumed as intensive enough then it is possible
often to believe that a hindrance #(r) is Gaussian random field. In
addition, if processing algorithms do not consider thin difference
of spatial spectra of a useful signal and hindrance but focus the
attention on the analysis of generalized spectrum’s modes of the
field 5,,(r) then hindrance 7(r) may be approximated by Gaussian
white noise with a correlation matrix of a kind K,(r;, r;) =
= (Ny/2)d(r, — r;). Here Ny/2 is spectral density (intensity) of
white noise. The model 7(r) as white noise is quite proved if hin-
drance sources are wideband processes in electronic devices [11]
and will be used by us further.

On observable realization &r) and the available prior informa-
tion it is necessary to restore an original signal s,,(r) in an optimal
way.

In the task of signal (image) restoration at the presence of
random hindrances the vector C = (Cps s Cyy) is unknown and
cannot be calculated directly as in (5)-(7). Therefore in the pro-
cessing operations it is necessary to receive an estimate of this
vector. At synthesis of estimation algorithm we will use a maximum
likelihood method. Without loss of generality of obtained results for
simplification of mathematical calculations we will believe a signal
5,/(r) as one-dimensional in the sequel, i.e. s,/(r) = s5,,(x). Then fol-
lowing [ 12] a logarithm of functional of likelihood ratio L as func-
tion of current values of all unknown coefficients C,, 0 = n = M
can be written down in the form:

- 1 R R
L(C) = E[ng E(x)sM (x,C)dx — /;lsﬁ(x, C)dx]. (19)
Using the representation of a useful signal (18) in Eq. (19) we
have
- 1 &
L(C) = FZ(zxn c,—Cl).

0n=0

(20)
Here X, = [o&(x) @,(x)dx. As maximum likelihood estimates

(MLEs) C= (C~0, E’M) of measured parameters the position of
the greatest maximum of solving statistics (20) is taken:

C:' = arg supL(C') .
¢

Estimates 6‘,,, 0 = n = M can be found from the decision of
the likelihood equations

aL(C)ac, =0, aL(C)/ac, =0, ..,
aL(C)lac, = 0. Q1)

Substituting (20) in (21) and carrying out simple transforma-
tions we come to MLEs of a kind

C =x = fg Ex)e, (x)dx, 0=n=M. (22)
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Polynomial coefficients and approximation mean square error for various types of signals Table 1
. exp(-x) 1- ] x| sgn(x)
ct cr c? c' ct cf 't ct cf ¢t
0 0.747 0.645 0.707 0.816 0.499 0.363 0.479 0.482 -5.9%107 0 -2.8*1078 -3.9%10°®
1 -6.4%107° 0 -4.2%10°8 -3.7%10° 3.1%10° 0 -2.0%10™" -3.4%1072 1.503 1.275 0.576 1.152
2 -0.446 -0.313 -0.088 -0.068 -0.623 -0.423 -0.085 -0.091 -3.1*10™ 0 6.6%1078 1.8*107
3 -1.6%107* 0 8.1%10° -4.5%10” 7.8%10°° 0 4.0%107"2 1.9%107" -0.885 -0.428 -0.050 0.088
4 0.074 0.039 -5.5%107° 2.8%107° 0.184 0.084 7.3*10°° 8.1%10°° -6.2%10°* 0 -6.2%10” 1.1x10°®
5 -2.9%107* 0 -9.9%107!! 1.1¥107 2.0%10° 0 -3.9%107 5.4%107 0.708 0.261 3.9%107 0.017
6 -7.3x107° -3.2%10°° -2.3+10 -7.7¥107 -0.097 -0.035 -4.1x10* -4.2+107 -1.1¥107 0 -1.3¥10”° 1.710°8
7 -4.9%107* 0 6.3%10™"! -3.9x107"! 4.9%107 0 2.3x107™ -1.0+10™" -0.619 -0.191 -2.4%107* 6.8%107*
8 -5.6%10°* 2.0%107 -7.2¢10°° 1.2¢10°° 0.061 0.019 1.7%107 1.2¢107° -1.9%107 0 2.0%107"° 3.9x107'°
9 -8.9%10™* 0 6.3%107 -2.1¥107" 4.8%107 0 0 0 0.569 0.154 1.2¢10°° 6.7%10°
10 -1.2*%10™ -1.0%10° -1.8*%1077 3210 -0.041 -0.011 -5.4%1077 7.7%10-* -3.3%107° 0 -1.1x107™" 1.6x107"°
11 -1.6%10° -1.2%107" -3.2¢107" 231071 -1.0%10* 0 0 0 -0.539 -0.132 -5.3%107 1.7%10°°
12 -5.4%107° 4.2%107 3.7%107 -5.4%10”° 0.029 7.1x10° 1.4¢10°® -2.8x10° -4.7%10°} -4.2%10°" 1.4¢10°" 5.0x107"2
13 -2.1¥107° 1.7%10°" 9.5%107% -8.8%107%° -3.9%10 0 0 0 0.522 0.117 2.0%10° 1.2¢107
14 -8.0%10°* -1.5%10° -6.6%10"! 42107 -0.020 -4.5¢107 -2.9¥107"° 1.8+10” -4.2¢107° -1.5%10" 1.2¢10™" -3.0+10™"
15 -1.3*10° -1.0¥10™" 0 0 -5.0%10"* -5.2¢10°" 0 0 -0.522 -0.108 -6.4%1071° 2.2¢107°
16 -9.9%107* 4.6%1071° 9.9x107" -2.5%10™" 0.012 2.7%107 49107 -7.9x10™" -4.2¢10* 1.3+107" 0 1.0+107
17 1.5%10° 6.7%107" 0 0 -1.2¢10" 3.5¢107" 0 0 0.525 0.103 1.8%107!! 1.2¢107°
18 5.3%107 -5.1%107"7 | -L1x107" 1.2¢1072 -6.3%107 -1.3%107 -5.9%107" 2.8%107"2 8.6x107 -2.3%107" 0 0
19 5.1%107° -3.0%107" 0 0 5.9%10°* -1.6+10" 0 0 -0.539 -0.100 -4.8%10°" 1.6%107"
20 2.2%107 -6.9%10™" 0 0 6.7¢10™* -1.0«10™" 0 0 0.016 9.0¢10™" 0 0
3(5) 4.2%10°° 5.3%10°° 2.0%10°° 9.8%107 1.3¥10°7° 1.4x10° 0.016 6.5%107 0.098 0.100 0.186 0.148
3(10) 7.1%10-* 8.8*10™" 1.2¢107° 5.2410°° 1.5%107 1.6%10°* 2.4+107° 2.2¢10° 0.061 0.061 0.145 0.125
3(15) 4.2%107 0 7.1¥107 8.9x10° 7.1%10°° 7.6%107° 1.810°7° 4.4x107° 0.040 0.040 0.114 0.124
3(20) 1.2*%10° 0 8.0x107® 9.6%107* 5.1¢10° 5.5%107 1.7¢107° 0.014 0.034 0.033 0.108 0.120
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The found estimates (22) obviously allow to restore a useful
signal s),(x) according to Eq. (18).

Let us find characteristics of MLEs (22). As MLEs’ character-
istics we will use their conditional biases (systematic errors)
b(a, ‘ C)= <€’”> — C, and variances (error mean squares) V(E’” ‘ c,)
= <(€’ﬂ - C,,)2>. Here angle brackets < } designate averaging opera-
tion on all possible realizations &(r). Carrying out direct averaging
Eq. (22) we receive that the estimate 5,, is conditionally unbiased:
b(E‘n \ C,) = 0 and its conditional variance has the appearance
V(z‘,7 \ C,) = Ny/2. Besides, by virtue of orthogonality of basis {¢,(x)}
the estimates C,, 0 = n = M are uncorrelated: ((C, — C,)(C, —
= C,)) = (No/2) [o@u(x) @, (x)dx = 0, k # n.

Let us assume that for restoration of a useful signal s,,(x)
K modes of expansion (22) are used. Then the restored signal
sk(x) can be presented as follows

(23)
n=0
Define difference of the restored signal sg(x) (23) from origi-
nal signal s,,(x) (18) as [12, 13]

®) = ([ [54 (9 = su ()] ) =
_ EV(C" c)+ éci = %(K + i Zg),

Here zﬁ = 2C,2,/N0 is the signalto-noise ratio (SNR) for
a mode with an index n. According to Eq. (24) error <(5> consists
of two components. The first component is the fluctuating error
increasing with K which is attributed to a deviation E,, from C,.
The second component is caused by energy of unrestored modes.
It is obvious that it decreases with K.

(24)

Let us denote 22, = Min(zg, Zgs, -, Z3y) and 23, = max(zg,

ZRa 1> -+ Z17) @s minimum and maximum SNR in the residual mode
signal expansion. Then from Eq. (24) following inequalities can
be written down:

(M~ 1)z, + K1 — 22,) < N, (0)/2 <
<M+ Dz, + K1 —z2,).

Thus, the normalized error u(K) = N0<(5>/2 as function of
integer variable K lies between two majorizing functions

£(K) = (M+ 1)z, + K(1 — 22,),

£H(K) =M+ 1)z2, + K1 —z.,). (25)

In Fig. 1 the typical behavior of normalized error u(K) for three
cases is shown: a) 22, < 1, 24 < 1 (Fig. la); b) 22, > 1, 22, >
> | (Fig. 1b); ¢) 2, < 1, 2%, > 1 (Fig. 1c). Also here for com-
parison the dependences of functions f,(K) and f,(K) (25) are
plotted. As test signal the signal s,/(x) = exp[—a2(x - r)z] in
basis of Hermite functions (4) was used. The generalized spectrum
of such signal has the appearance [4]

COMMVINICIONS

n

c = @ ox (_ a’t’ >H at
to2mal(et 1 Vet "(¢a2+1)'

At construction of graphs it was taken ¢ = 1, 7 = 2 and first
six modes of expansion (M = 5) were discounted. The noise spec-
tral density for Figs. la-1c was accepted equal 1, 0.02 and 0.2
respectively.

WK) .
£,(K)

5 —
\/
4 '.—___.-____....--""'
/ﬁm//'———————-/

[ 2 3 4 K
a)
wK)
250
200 “"““*\
£(K)
150 N
w(K)
100 ———
. \___. \
8 fi(K) |\""--_______-...__
1 2 3 4 K
b)
u(k)
250
200 \"“"--..h
\f,(m
150 :
u(K) \
---‘-'"‘"---...___
100 — \
““N"‘--.. \
50 —
.-—-—-_-_-_-_d
i ________._._-—-—-—-—-—-ﬁ']a"
1 2 3 K
Kopt
¢

Fig. 1 Normalized restoration error of a useful signal at various
intensities of acting hindrances

COMMUNICATIONS 2A/2013 o Tj



COMMINICIONS

As follows from Fig. 1 under conditions 22, < 1,2 < I the
function u(K) is monotonously increasing (i.e., with increasing
number of processed modes the restoration error of a useful signal
(24) also increases). If 22, > 1, 2%, > | then the function u(K)
(and therefore the restoration error (24)) monotonously decreases
with increasing number of processed modes. At last, in case of
2. < 1,722, > I the behavior of function #(K) becomes nonmo-
notonic. Really, having rewritten Eq. (24) as

M
wWK)y=M+1+ 3 (z22—1) (26)
n=K

it is possible to see that while condition z> > 1 holds summands
under summation symbol (26) are positive and u(K) decreases
with increasing K. However, with the beginning of fulfillment of the
condition zf, < 1 summands in Eq. (26) change a sign on opposite
and the error u(K) starts to increase. The optimum number of
restored modes K,,, corresponding to the minimum restoration error
U(K) of a useful signal 5,,(x) is determined by the relation ZZK =1
(or more exactly z% > 1, z&., < 1) for the considered example
K, = 4 (Fig. 1c). Physically this is explained by the fact that
under 2> < 1 the fluctuating error connected with restoration of
such modes is more than a deterministic component of the total
error. Therefore, further expansion of signal components s(x)
becomes inexpedient.

Qualitative illustration of operation of the synthesized restora-
tion algorithm (22), (23) at various types of the useful signal
observed against white noise is shown in Fig. 2. Here the original
useful signal s,,(x)(M = ) is plotted by solid lines, the realization
of the observed data &x) - by dashed lines and the restored signal
sg(x) - by points. In Fig. 2a the useful signal is described by dif-
ferentiated function with two local maxima, in Fig. 2b - continuous
nondifferentiable function and in Fig. 2¢ - discontinuous func-
tion. As basic functions {¢,(x)} Legendre polynomials (1) were
used. The number of coefficients of the generalized spectrum used
at restoration was chosen based on the condition (5) = 0.05(24)
for the “worst” type of signal. As “worst” the signal for which the
coefficients of the generalized spectrum decrease more slowly with
increasing sequence number is meant (as follows from Table 1 this
type of signal will be discontinuous signal). Thereby the K value
made K = 15 (it may be noted that generally speaking K < K=,
for the considered examples).

From Fig. 2 follows that the proposed algorithm (22), (23)
allows to restore information signals against uncorrelated hin-
drances at input SNRs’ values of the order or less —3 dB to a high
accuracy. The conducted additional researches have shown that
the mentioned algorithm can be also used for effective extraction
of signals against stationary Gaussian and Laplace hindrances
(including hindrances with high enough intensity).

4. Conclusion
In this work the restoration algorithms of signals and images on

the basis of their representation in the form of a set of coefficients
of the generalized spectrum at absence and presence of random

&(x)
SM[K )
skix)

a)

&lx)
sy (x)
sk lx)

L EEE Ry Py

b)

2(x)
S‘\{{X I-
s lx)

e

353

S

¢)

Fig. 2 Original, noisy and restored signals with various behavior

distortions were considered. It was shown that the number of coef-
ficients of the generalized spectrum of a restored deterministic
signal (image) is defined by the desired approximation error at use
of one or another metrics of functional space. Herewith at pro-
cessing of continuous signals the application of Hermite polyno-
mials or functions appears the most effective. If the useful signal
is discontinuous then the construction of the generalized spec-
trum in basis of Chebyshev polynomials is more expedient.

In the presence of stationary hindrances the maximum-likeli-
hood approach in aggregate with the generalized spectral signal
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representation in bases of orthogonal polynomials (functions) allows
to receive the restoration algorithm of signals (images) which is
rather effective (including the action of hindrances of enough high
intensity), requires the minimum amount of the prior information
(in particular, the form and other characteristics of a useful signal
can be unknown) and can be practically realized in both analogue
and digital variants sufficiently simply. Besides, in the general case
there is an optimum number of coefficients of the generalized
spectrum (relatively small because of fast decrease of the general-
ized spectrum with increasing the number of coefficient) required
for restoration of a useful signal against hindrances here.
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