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IMAGE EXTRAPOLATION USING SPARSE METHODS

Image extrapolation is the specific application in image processing. You have to extrapolate the image for example when you want to
process the given image piecewise. When the border patches are incompleted you must extrapolate them to the given size. Nowadays,some
basic extrapolations, e.g. linear, polynomial etc. are used. The advanced methods are presented in this paper. We are using the algorithms
that are based on finding the sparse solutions in underdetermined systems of linear equations. Three algorithms are presented for image
extrapolation. First one is the K-SVD algorithm. K-SVD is the algorithm that trains a dictionary which allows the optimal sparse representa-
tion. Second one is Morphological Component Analysis (MCA) which is based on Independent Component Analysis (ICA). The last is the
Expectation Maximization (EM) algorithm. This algorithm is statistics-based. These three algorithms for image extrapolation are compared

on the real images.
Keywords: Image extrapolation, sparse, K-SVD, MCA, EM.

1. Introduction

Image processing using underdetermined systems of linear
equations is a very promising approach in different applications.
In the previous years methods for image denoising based on image
splitting were used [ 1]. Today, we could denoise the image via under-
determined systems of linear equations [2]. Except image denois-
ing we use these systems for image compression [3], deblurring
[4] or image inpainting [5] and for many other applications.

We will use the algorithms originally designed for image inpaint-
ing to image extrapolation. Image inpainting is the framework for
filling in the known holes in the input image. Classical inpainting
methods assume filling the holes from different directions. If we
want to use these algorithms for image extrapolation we must
redefine or modify some parameters or parts of the original algo-
rithms.

If we are using underdetermined systems of linear equations
we want to find the sparse solution. The sparse solution is the one
which contains only a few nonzero coefficients. The basics of sparse
signal representations are introduced in [3]. All methods for finding
sparse solutions start from the basic problem (P,) which is defined
as follows:

(Py): rnxionH0 subject to y = Dx (1)

where y is the known signal (e.g. image) we want to reconstruct,
D is the dictionary which consists of # atoms (“elementary signals™)
in columns and m rows which denote the length of atoms. An
unknown sparse solution represents amounts of each atom in the
original signal. We define the norm of a vector:
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(2)

and 0 < p < oo, If 0 < p < 1, it is actually not the norm, it is the
quasinorm. The quasinorm is similar to the standard norm, but it
does not satisfy the triangle inequality.

The optimization problem (1) is defined in €, When | x|}, << n
for x € R", we could say that x is sparse. Searching for the sparse
solution without any algorithm in €, norm is NP-hard problem.
The problem can be redefined to:

(Py): min| x|, subject to | Dx =y, < ¢ 3)

where ¢ is the error of solution. There are various algorithms
dealing with this problem. The overview of these algorithms is pre-
sented in [6].

2. Applied algorithms

A) K-SVD algorithm

In most applications via underdetermined systems, we assume
fixed dictionary D. K-SVD algorithm is the algorithm for adaptive
learning the dictionary that allows sparse representation of the
input signal. It is called K-SVD because of the SVD (Singular Value
Decomposition) algorithm which is always performed K times
where K is the count of columns in D. K-SVD algorithm is the
generalization of the K-means algorithm [7]. K-SVD is the iterative
algorithm containing two basic steps. The first one is finding the

Department of Telecommunications, Brno University of Technology, Brno, Czech Republic,

E-mail: jan.spirik@phd.feec.vutbr.cz, zatyik.jan@phd.feec.vutbr.cz

174e¢ COMMUNICATIONS 2A/2013



REVIEW

sparse solution x for the actual dictionary. The second step is the
dictionary update. Before application of these steps we must ini-
tialize the dictionary. The initialized dictionary must have all atoms
(all columns) ¢, normalized. We could use, for example, DCT dic-
tionary or otherwise a random matrix for the initial dictionary.

We could formulate the K-SVD as:

nlg(n {HY — DX Hi} subject to Vi,

X; ”0 =T, (4)

where ¥ is a matrix that contains training samples {y,}\, in
columns, Xis a matrix that contains the corresponding coefficients,
T, is the error of the representation and , denotes the Frobenius
norm. The Frobenius norm is defined as:

|l =/ 2ZXd. )

In the first stage we assume D fixed. We can express the
penalty term as:

N
¥~ DX[; = 35— Dx[:, ©
i=1
Then we could divide (6) into problems:
g}
2

subject to || x; [, = Ty, (N

i=12.,N minf

y,—Dx,|

These problems could be solved by the known algorithms for
finding sparse solutions in underdetermined systems of linear
equations.

In the second stage the dictionary D is updated. We assume
D and X fixed. In each step only one atom (column in D) d, and
corresponding row ka in X will be updated. Based on previous
statement we define sets w, that consists of indexes of vectors {y;}
which use the atom d,, in fact where x% is nonzero:

o, = {1 <i<N,x};(i)#0}. (8)

Then we define matrices of errors E, that express error for all
N samples with missing k-atom:

E =Y—Ydxj. 9)

J#k

With these conditions we could rewrite (4) as:
Y— Ddx}
j#k

= H(Y* Zd,x}) —d,;x}

J#k

Iy px[; |

2

.
(10)

=B axi

F

For simplification we apply sets w, to the matrices E, in that
manner we choose only columns that correspond with w, and we
get Ef. Using the algorithm SVD we divide Ef. into:

ER = A" (11)

COMMVINICIONS

The last step in the dictionary update stage is only replacing
the current atom (column) of the dictionary 4, with the first column
of the matrix U and the corresponding row of coefficients xAT’ with
the first column of matrix ¥ multiplied by .

Extrapolation via K-SVD is realized as training the dictionary
on the image patches with the chosen size (for example 8 X 8,
16 X 16 pixels). The count of atoms in the dictionary is chosen
by user too. For the image extrapolation we add random pixels in
the place where we want to extrapolate the image. We also define
the binary matrix M which extends the original image. Ones in the
binary mask represent the known pixels in the image and zeros
indicate the missing ones. We can reformulate problem (7)) as:

mxionHO subject to MDx = y. (12)

If we perform K-SVD we apply M to the dictionary D, but in
the extrapolated part of the image we use the whole trained dic-
tionary. For better results we completely overlap all the patches
from the image [3].

One of the biggest disadvantages of K-SVD algorithm is the
dependency on the length of extrapolation with the patch size. We
must train the dictionary for the patches of minimum (e + 1) X
X (e + 1) pixels, where e is the length of extrapolation in pixels.
It means that the computational efficiency is dependent quadrat-
ically on the length of extrapolation. This patch size is chosen
because of the overlapping patches. If we do not fulfill this limit,
the extrapolation will be unsuccessful, the end of the extrapolated
part will be black.

On the other hand, the big advantage of K-SVD extrapolation
is that the training part for one image is done only once. You can
extrapolate the image to different directions, but the trained dic-
tionary remains the same. Only the reconstruction will be done.
For example, if you train the dictionary for patches 8 X 8 pixels,
you should perform extrapolation to any directions with the extrap-
olation length of maximum 7 pixels.

B) Morphological Component Analysis

The basics of Morphological Component Analysis (MCA)
are introduced in [8]. We assume that the input picture is a linear
combination of two independent parts: cartoon and texture. This
idea comes from Independent Component Analysis (ICA). We use
two incoherent dictionaries. The dictionary D, allows sparse decom-
position of the part of the image y, (we assume the picture as 1-D
vector) that contains only texture. On the opposite side, the dictio-
nary D, allows sparse decomposition of the part of the image y, that
contains only cartoon. We could formulate the problem as:

beiroxr} = arg minfxf, + | x], subject to
X1s Xe

y=Dx,+ D,x,. (13)

Because of the problem for finding the numerical solution we
must reformulate equation (13) as:
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{x,”"’,x;”" = arg min”x, |] + ‘ x|, +
o) (14)
+A|y —Dx,— D.x|’+ yTV{D.x},

where the third term of the equation reflects the reconstruction
error and TV is the abbreviation for total variation penalty. We use
the TV for recovering piecewise smooth objects with pronounced
edges, when applied to the cartoon layer [9]. The total variation
is essentially the €, norm of the gradient.

For the purpose of image extrapolation, we must apply the
binary mask M the same way as for K-SVD to the image:
_l’_

{xrx2} = arg EniI}le, X,

|+

1 (15)
+ AHM(y —D,x,— D.x,)

S+ yTV{D.x}.

Ones in the binary mask express the known pixels in the image
and zeros indicate the missing ones.

If we assume that y, = D,x, and we know the texture part of
the image y, we can calcute the sparse vector x,asx, = D, x, + r,,
where 7, is a residual vector in the null-space of D, and © denotes
Moore-Penrose pseudoinverse. We apply the same properties to
the cartoon part. For simplification we assume #, = r, = 0. Then
we could minimize the problem as:

min| D,y |, +[ Dy, +
06
+ 4| M(y =y, —y)

ST

When we implement the algorithm we first choose the thresh-
old factor, number of iterations and the parameters A and y. The
last two parameters should be constant during the iterations or
they could be descended. Then we initialize the cartoon part of the
image as y, = y and the texture part as y, = 0. After that we iterate
the algorithm to the stopping rule (threshold or number of itera-
tions). In the iteration part of the algorithm we first fix the texture
part of the image y, and we update the cartoon part y, and then
vice-versa. After these two stages we apply the TV penalization.

The important step in the algorithm is the choice of the dic-
tionaries. For texture part we should use local DCT, Gabor or
wavelet packets transforms and for the cartoon part wavelet,
curvelet, ridgelet, contourlet and many other transforms [9]. MCA
extrapolation significantly depends on the choice of dictionaries.
For different types of pictures (real-life pictures, cartoons, computer
images) a different combination of dictionaries is more vital. The
extrapolation is performed for every single direction separately.
You cannot do any temporary calculations. You only perform the
reconstructions phase, there is no training phase as for K-SVD.
All the conditions for successful extrapolation are included in the
algorithm.

C) Expectation-Maximization algorithm
Expectation-Maximization algorithm (EM) is based on math-
ematical statistics. It is iterative method for estimation of maximum-
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likelihood. In this case we use this method for finding sparse solu-
tions based on penalized maximum-likelihood estimator estimation
[5]. In terms of statistics inpainting is a problem of estimation
from incomplete data sets. EM algorithm is used for computation
of sparse vector x from the previous iteration. We reconstruct the
whole image, not only the missing parts. As well as MCA the effi-
ciency of EM depends on the choice of the dictionary. One of the
biggest advantages is that we could make a dictionary from several
different transformations, i.e. utilize underdetermination of the
system.

At first we must define the penalized maximum-likelihood
estimator [5]:

~ . 1 2

X = arg m}nT‘ZHY* Dx| + AW (x) (17)
where ¢” is a variance of zero-mean additive white Gaussian noise,
A > 0 is regularization parameter and ¥ is a penalty function. The
penalty function must be non-negative, continuous, even-symmet-
ric and non-decreasing function. But it must not be necessarily
convex in R*. We often use €-norm penalty for ¥. We divide the
input image into two sets: y, which contains the known pixels
from the image and y,, which contains the unknown pixels from
the image. The incomplete observation makes impossible calcu-
late (17) at once. We use EM algorithm for iterative reconstruc-
tion of missing data so that we use (17) for computation of new
estimations until the convergence is achieved.

As already mentioned above the EM algorithm is iterative
process. It consists of two steps: Expectation (E) step and Maxi-
mization (M) step. In the first step the conditional expectation of
the penalized log-likelihood of complete data y, and actual para-
meters is calculated. The particular expectations can be expressed
as the conditional expected squared values of the missing data:

y/’ = H[yi’Dyyoax’a 0‘2[ =

| y» forobserved data,i €I, (18)
"~ |(Dx'), for missing data,i €1,
3w:|D. yox' 0¥ =

vl for observed data,i € I, (19)

B {(Dx’)l_2 + 0% formissing data,i €1,
We could express the estimation at 7 iteration as:
V' =Y.+ (I~ M)Dx' = Dx'+ (y.,— MDx") (20)

where y,., = My and M is the binary mask with the same proper-
ties as above.

In M step we maximize the penalized function with the missing
observations using the estimates from the E step at ¢ iteration:

o¥ = %;(y[ — (D(x)’)l)z + (}’l - nOGZI)] s

where 7, is the number of observed pixels.

21
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These two steps are repeated ¢ times until the convergence is
reached:

(22)

that is the maximum-likelihood estimate of the noise variance inside
the mask with the observed pixels. The properties of convergence
depend on the structure of the dictionary. The algorithm behaves
differently when the dictionary is the basis, tight frame or union
of several incoherent orthogonal dictionaries [5].

The EM extrapolation is in properties very similar to MCA
extrapolation. There is no training phase. The result depends on
the dictionary if it is basis or union of basis or etc.

The biggest disadvantage of EM algorithm is that the recon-
struction is performed on the whole image, not only on planned
parts. It means the extrapolated image is blurred. The blur effect
depends on the length of extrapolation. You can improve the EM
reconstruction result by some technique presented in [4].

(a) (b)
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3. Experimental results

We choose the excerpt of the Barbara image (Fig. 1) to compare
the efficiency of the presented algorithms. The algorithms were
compared for different length and type of extrapolation. For the
purposes of experimental measurements, the binary mask M to the
known part of the image was applied. It is because of possibility to

..|'||'|“h

(©) (d)

Fig. 2 Image extrapolation of 7 pixels: (a) original image with applied mask, (b) reconstruction via K-SVD: PSNR 36.3 dB, SSIM 0.9981,
(¢) reconstruction via MCA: PSNR 29.0 dB, SSIM 0.9946, (d) reconstruction via EM: PSNR 27.7 dB, SSIM 0.9445

Fig. 3 Image extrapolation of 15 pixels: (a) original image with applied mask, (b) reconstruction via K-SVD: PSNR 29.5 dB, SSIM 0.9846,
(¢) reconstruction via MCA: PSNR 25.3 dB, SSIM 0.9765, (d) reconstruction via EM: PSNR 24.4 dB, SSIM 0.9264
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(a) (b)

(c) (d)

Fig. 4 Image extrapolation of 25 pixels: (a) original image with applied mask, (b) reconstruction via K-SVD: PSNR 25.6 dB, SSIM 0.9612,
(c¢) reconstruction via MCA: PSNR 21.9 dB, SSIM 0.9428, (d) reconstruction via EM: PSNR 21.9 dB, SSIM 0.8984

(a) (®)

b/

(c) (d)

Fig. 5 Image extrapolation of 25 pixels into 2 directions: (a) original image with applied mask, (b) reconstruction via K-SVD: PSNR 22.1 dB, SSIM
0.9045, (c) reconstruction via MCA: PSNR 20.9 dB, SSIM 0.8981, (d) reconstruction via EM: PSNR 21.4 dB, SSIM 0.8541

measure the efficiency of the algorithms. The binary mask will be
always rectangular. We choose the length e of extrapolation and
then which direction we want to extrapolate. We could make extrap-
olation for more directions at once. We fill in e columns or rows
(it depends on the directions of extrapolation) with zeros in M.

The standard PSNR and SSIM are applied for measurement
reconstruction quality. We are introducing some examples of extrap-
olation in the following figures (Figs. 2 - 5). For all extrapolations
using MCA and EM algorithms two incoherent dictionaries were
used: curvelets [10] and undecimated discrete wavelet transform
[11].

4. Conclusion

The principles of three different algorithms for image extrap-
olation that are using sparse solutions have been presented. The

results for different lengths and directions of extrapolation were
shown in the figures. Our subjective perception of the quality of the
reconstructed images corresponded with the objective measurement
of quality: PSNR and SSIM. The best algorithm from the presented
algorithms was K-SVD algorithm. The quality was especially in
good reconstruction of the texture parts in the image. There is also
only a small blur effect. Some modifications can be made in the
original K-SVD, for example, non-square patches and so on. These
and more modifications will be presented in the future work.
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