

Ludovit Tomanek - Anna Tomankova *

GROUPS WITH THE INFINITE NON-QUASICENTRAL NODAL SUBGROUP

We present some properties of the groups with the infinite non-quasicentral periodic nodal subgroup. Our main results are formulated in Theorem 1, 2 and Theorem 3, 4, 2000 Mathematics Subject Classification: 20F22, 20F25

Keywords: A group, a subgroup, a commutator of a group, a locally graded group, p-quasicyclic group, a direct and semi-direct product of groups, an extension of a group.

The description of groups defined by the systems of their subgroups was first described in the papers of Chernikov and Kurosh (RN – groups, [1]). Chernikov dealt with an extension of the direct product of the finite number of the quasicyclic groups by the finite abelian group (u – groups, [2]), with the infinite non-abelian groups whose arbitrary infinite subgroup is the normal subgroup of the whole group (INH – groups, [2]). Subbotin studied the groups G in which every subgroup from commutator G' is a normal subgroup of G (KI–groups, [3]). Tomanek, L. studied the IAN and the IANA groups, Definition 1, (IAN groups, [4]). This definition was given to the author by Chernikov. In this paper we describe IAN and IANA groups with the infinite non-quasicentral periodic nodal subgroup.

We use standard designations of terminology where: $M \times N$ is the direct product of the groups M, N; $\sum_{i \in I} Xi$ is the direct sum of the additive groups X_i for all $i \in I$, $M \setminus N$ is the semidirect product of the groups M, N; $M.N = \{mn \mid m \in M, n \in N\}$ is the product of the groups M, N, G/A is the factor group of Gby A, |G:N| is the index of the subgroup N in a group G; $\langle a \rangle$ is the cyclic group generated by the element $a_i < a_i$, b_i , c > is the group generated by the elements a, b, c; $H \le G$ where H is the subgroup of G; $H \subseteq G$, H is normal in G; $[a,b] = a^{-1} b^{-1} ab$ is the commutator of the elements $a,b \in G$; G' = [G,G] generated by all commutators of the elements $a,b \in G$ is the commutator of G; [5] $Z(p^{\infty}) = \{x \mid x^{p^n} = 1, n = 1, 2, ...\}$ is the *p*-quasicyclic group; $C_c(A)$ is the centralizer of the subgroup A in G; C(G) is the centre of the group G; $G \cong H$ where the groups G, H are isomorphic. The group G is the p-group if each of its elements has an order with a power of some fixed prime p [6]. The group G is a locally graded group if every finitely generated nontrivial subgroup of G contains a proper subgroup of finite index ([2] p.236). The group G is the solvable group if it includes series: $G > G' > G^{(2)} > ... > G^{(n)} = \langle e \rangle$. The subgroup A is a quasicentral of G if every subgroup of A is normal in G. The group G is the extension of the group G by a normal subgroup G of if $G/N \cong H$. The extension of the finite direct product of the quasicyclic groups by the finite abelian group are G is the extension of the quasicyclic group if G is the extension of the quasicyclic group by the finite group. G is the extension of the quasicyclic group by the finite group. G is the extension of the quasicyclic group by the finite group. G is the extension of the quasicyclic group by the finite group.

Definition 1.

An infinite non-abelian G is said to be the IAN group if there exists a subgroup A of G so that every infinite subgroup of A and every infinite subgroup of G containing A is a normal subgroup of G. The group G is the IANA group if A is the abelian subgroup. The subgroup A is called the nodal subgroup.

Definition 2.

An infinite non-abelian G is the INH group if an arbitrary infinite subgroup of G is the normal subgroup of G.

Definition 3.

The group G is the Dedekind group if an arbitrary subgroup of G is the normal subgroup of G. Non-abelian Dedekind group G is called the Hamiltonian group.

Proposition 1. [[2], T. 6.10]

The infinite Hamiltonian groups and the non-abelian non-Hamiltonian groups that are the finite extensions of the quasicyclic

E-mail: ludovit.tomanek@fhv.uniza.sk

^{* 1}Ludovit Tomanek, 2Anna Tomankova

¹Department of Mathematics, Faculty of Humanities, University of Zilina, Slovakia

²Institute of Foreign Languages, University of Zilina, Slovakia

subgroups by the finite abelian and the finite Hamiltonian groups form the class of the solvable INH groups.

Proposition 2.[[7], T.12.5.4]

The group G is the Hamiltonian group if and only if the group $G = Q_8 \times M \times N$ where Q_8 is the quaternion group, M is an elementary abelian 2- group, N is a periodic abelian group with no elements of the order 2.

Lemma 1.

Let G be the IAN group with a nodal subgroup A. If a nodal subgroup A contains the element of the infinite order, then A is the abelian quasicentral subgroup of group G.

Proof. If the group A contains the element x of the infinite order, then according to Definition 2, the group A is the INH group. According to Proposition 1 A is the abelian group. Let B be an arbitrary subgroup of the group A. We shall show that $B \subseteq G$. If B is an infinite subgroup of G, B is admittedly a normal subgroup of G.

Let B be a finite subgroup of G. If A is the abelian group containing the element x of the infinite order, then $B \le x \ge B \times \le x \ge A$. Pursuant to Definition 1 $(B \times \le x \ge A) \le A$ which implies A = A. Thus A = A is the abelian quasicentral subgroup of the group A = A.

Lemma 2.

If G is the locally graded IAN group with the nodal subgroup A, there exists a subgroup of A that is not a normal subgroup of G. Then A is a finite group or A is the extension of the quasicyclic subgroup by the finite Dedekind group.

Proof. Let G be the IAN group with a nodal subgroup A and let $A_1 \le A$ where A_1 is not a normal subgroup of G. Admittedly, $A_1 \ne \le A$ is a finite subgroup of G. In agreement with Lemma 1 A is a periodic group. If A is a finite group, then this lemma is valid. Let A be an infinite periodic subgroup of G. We consider two possible cases; A is not A group, or A is A group.

Case 1. Let A not be u – group. Then choose the subgroup A_2 of A where $A_2 = A_3 \times A_4$, $A_2 \cap A_1 = <e>$, and where A_3 , A_4 are the infinite cyclic groups of G. By Definition 1 $A_3 \subseteq G$, $A_3 \times A_1 \subseteq G$, $A_4 \subseteq G$, $A_4 \times A_1 \subseteq G$. Evidently $(A_3 \times A_1) \cap (A_4 \times A_1) = A_1$ and furthermore $A_1 \subseteq G$, so it is a contradiction.

Case 2. Let A be u-group. Then put A=R. B where R is the direct product of the finite number of the quasicyclic groups, R is at the same time a divisible group, and B is the finite group where $B\neq <e>$. Therefore, A_1 is not a normal subgroup of G; there exists a cyclic subgroup <a> of A_1 that is not normal in G and where R C is a divisible group, there exists a quasicyclic subgroup C of C and furthermore C contains the subgroup C vertically C where C is an infinite subgroup of C or C or C is an infinite subgroup of C, then, by Definition 1

 $R_2 \unlhd G$, furthermore $(R_2 \leftthreetimes \langle a \rangle) \unlhd G$, $R_1 \unlhd G$, $(R_1 \lessdot a \rangle) \unlhd G$. Evidently $(R_2 \leftthreetimes \langle a \rangle) \cap (R_1 \lessdot a \rangle) = \langle a \rangle$ and $\langle a \rangle \unlhd G$. This is a contradiction.

Let $R_2 = \langle e \rangle$, then $R = R_1$ is a quasicyclic group and moreover $A/R \cong B$ where B is a finite Dedekind group. Thus A is the extension of the quasicyclic subgroup by the finite Dedekind group. \blacksquare .

Theorem 1.

If G is a locally graded IAN group with a nodal subgroup A, then subgroup A belongs to one of the types:

- 1. A is a finite subgroup of G;
- A is an extension of the quasicyclic subgroup by a finite Dedekind group where G'is an infinite group;
- 3. A is an infinite quasicentral periodic subgroup of G;
- 4. A is a quasicentral non-periodic abelian subgroup of G.

Proof. If A is not a quasicentral subgroup of G, then, based on Lemma 2, the subgroup A belongs to one of types 1 or 2 of this theorem. If A is a quasicentral subgroup of G, then by Lemma 1 the subgroup A belongs to one of the types 3 or 4 of this theorem. \blacksquare .

By Theorem 1 and according to the definition of IANA groups the next corollary follows.

Corollary 1.

If G is a locally graded IANA group with a nodal subgroup A, then subgroup A belongs to one of the types:

- 1. A is a finite abelian subgroup of G;
- 2. $A=Z(p\infty)\times B$, where B is a finite group;
- 3. A is an infinite quasicentral periodic abelian subgroup of G;
- 4. A is a quasicentral non-periodic abelian subgroup of G.

Lemma 3.

If G is the locally graded group with the infinite periodic nodal subgroup A, then the subgroup A satisfies one of the following conditions:

- 1. A is the infinite periodic Dedekind quasicentral subgroup of the group G where G/A is the abelian group;
- 2. A is the infinite periodic Dedekind quasicentral subgroup of the group G where G/A is the Hamiltonian group and G is a locally finite group;
- 3. A is not the quasicentral subgroup of G, A is an almost quasicyclic subgroup of G where G/A is the Dedekind group.

Proof. If G is the locally graded group with an infinite periodic nodal subgroup A, then, according to Theorem 1 A is the extension of the quasicyclic subgroup by the finite Dedekind group, or A is the quasicentral subgroup of the group G.

Let A be the extension of the quasicyclic subgroup B by the finite Dedekind group. If B is an infinite subgroup of G containing A, then $B \subseteq G$ and furthermore every quotient subgroup

 $B/A \subseteq G/A$. Since G/A is the Dedekind group, A then satisfies the 3^{rd} condition of this lemma.

If A is a quasicentral subgroup of group G, then, analogous to the paragraph above, we can prove that G/A is the Dedekind group. Admittedly, G/A is the abelian or the Hamiltonian group. If G/A is the abelian group, then A satisfies the 1st condition of this lemma.

Let G/A be the Hamiltonian group. By Proposition 2 G/A is a locally finite group. Thus an extension of a locally finite group by a locally finite group is a locally finite group, which implies that G is a locally finite group and hence A satisfies the 2^{nd} condition of this lemma. \blacksquare .

Lemma 4.

If G is the locally graded IAN group with the infinite nodal subgroup A non-quasicentral of G, then A is the extension of a quasicyclic group by the Dedekind group.

Proof. Let G be the locally graded IAN group with the infinite nodal subgroup A non-quasicentral of G. According to Theorem 1 A is a periodic group, by Lemma 3 A is the extension of a quasicyclic group by the Dedekind group.

Lemma 5.

If G is the group with a finite nodal subgroup A, then G/A is the abelian group, or the group.

Proof. If G/A is the abelian group, then this lemma is valid. Let G/A be a non-abelian group and B/A be an arbitrary infinite subgroup of G/A. There evidently exists $B ext{ } e$

Theorem 2.

Let G be the locally graded IAN group with a nodal subgroup A. The nodal subgroup A of G is a non-quasicentral of G if and only if it satisfies one of the following conditions:

- 1. A is a finite non-quasicentral subgroup of G, the quotient group G/A is the INH group with the abelian commutator or G/A is the abelian group;
- 2. A is an almost quasicyclic group which contains the finite subgroups that are not normal in G, $|A:A\cap G| \le \infty$, and G/A is the Dedekind group.

Proof. Let G be the locally graded IAN group with the infinite nodal subgroup A. Admittedly, the subgroup A is a non-quasicentral of G. Referring to Lemma 2 A is a finite group, or A is an almost quasicyclic group.

If A is a finite group then, by Lemma 5, G/A is the abelian group or G/A is a solvable INH group. According to Proposition 1 the commutator of a solvable INH group is the abelian group. Thus the subgroup A satisfies the 1st condition of this theorem.

Let G/A be a solvable *INH* group. By the condition 3 of Lemma 3 G/A A is the Dedekind group. Based on this fact A is an almost quasicyclic group and by Definition 1 A is a non-quasicentral of G. Suppose there exists a finite subgroup and A is normal in G. Therefore G/A is the Dedekind group, A is an almost quasicyclic group, thus G' is a subgroup of that almost quasicyclic subgroup A. G' of G'. Let G' be a finite group and put A=G'. Hence A satisfies either condition 1 or condition 2 of this theorem.

If G' is an infinite group, then $|A.G':G'| < \infty$, $|A:AG'| < \infty$, too. Admittedly, A satisfies the 2^{nd} condition of this theorem.

Conversely. Suppose the nodal subgroup A satisfies either condition 1 or condition 2 of this theorem, then G is the IAN group with the non-quasicentral nodal subgroup A.

By Theorem 2 and the definition of IANA groups the next corollary follows.

Corollary 2.

Let G be a locally graded IANA group with a nodal subgroup A. The nodal subgroup A of G is a non-quasicentral of G if and only if it satisfies one of the following conditions:

- 1. A is the finite abelian non-quasicentral subgroup of G, the quotient group G/A is the INH group with the abelian commutator or G/A is the abelian group,
- 2. $A = Z(p^{\infty}) \times D$ where D is the finite abelian subgroup of G, A contains finite subgroups that are not normal in G, and G/A is the Dedekind group.

Lemma 6.

Let G be the IAN group with the infinite non-quasicentral Dedekind nodal subgroup A. Then $A=Z(p^\infty)\times D$ where D is a finite Dedekind group, $p\mid |D|$, and there exists the element $a\subseteq A$ so that the subgroup a>0 is not normal a>0 subgroup of G. For a>0 is a>0 is not normal a>0 subgroup of a>0.

Proof. Let G be the IAN group with the infinite non-quasicentral Dedekind nodal subgroup A. By Lemma 1 A is an almost quasicyclic group. Pursuant to Proposition 2 $A=Z(p^\infty)\times D$ where D is a finite Dedekind group, p=2, and D'=4. We shall prove that A does not contain a normal p-group 4 of 4.

Obviously, if every cyclic subgroup of A is a normal subgroup of G, then A is a quasicentral subgroup of G. Thus there exists a cyclic subgroup $\langle x \rangle$ of A that is not normal in G, which implies that the $\langle a \rangle$ Sylow G- subgroup of the group $\langle x \rangle$ is not normal in G. This verifies that G = G.

Let $q \neq p$ and $Z(p\infty) \cap \langle a \rangle = \langle e \rangle$. Then $Z(p\infty), \langle a \rangle \cong Z(p\infty) \times \langle a \rangle$ where $Z(p\infty) \times \langle a \rangle$ is the normal subgroup of G. Evidently, $\langle a \rangle$ is the Sylow q-subgroup normal in $Z(p\infty) \times \langle a \rangle$ and $\langle a \rangle$ is normal in G. This is a contradiction, thus g = p.

If $A = Z(p\infty) \times D \ge Z(p\infty) \le a$, then $Z(p\infty) \le a \ge Z(p\infty) \le b > 2 \ge 0$. Because the subgroup $\le a \ge 0$ is the p-subgroup

normal in G and furthermore $Z(p^{\infty}) \cap \langle a \rangle < \langle a \rangle$, $|b| > 1, \langle b \rangle$ is a p-group, therefore $p \mid |D|$.

According to Lemma 6 and the Definition of IANA groups, the next corollary follows.

Corollary 3.

Let G be the IANA group with the infinite non-quasicentral nodal subgroup A. Then $A=Z(p^{\infty})\times D$, where D is a finite group, $p \mid |D|$, the subgroup D contains an element a A so that the $\langle a \rangle$ p - subgroup is not normal in G.

Theorem 3.

The group G is the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G if and only if a quotient group G/A is the Dedekind group, $|A:A\cap G'| \le and$ the nodal subgroup A is of one of the types:

- 1. $A=Z(p\infty)\times D$, where D is the finite Dedekind group, p=2, D'=4e, $p \mid D \mid$, the subgroup A contains an element a such that <a> p-subgroup is not normal in G, and the quotient group $A/Z(p\infty)$ is the quasicentral in $G/Z(p\infty)$;
- 2. $A = Z(p\infty) \setminus D$, where D is the finite Dedekind subgroup, the group A does not contain the finite normal subgroup of G, and $A/Z(p^{\infty})$ is the quasicentral in $G/Z(p^{\infty})$;
- 3. $A=(Z(p^{\infty}).B)\times D$, where $Z(p^{\infty}).B$ is the non-abelian Syllow p-subgroup of G, D is the infinite Dedekind group, p=2, $D'= <e>, Z(p\infty) \le C(G)$, the finite group B has a normal series: $Z(p\infty)\cap B=B'=B_0 \leq B_1 \leq \ldots \leq B_r \leq \ldots \leq B_r, n\geq 1, B_1=B_{1,1} \leq b_1 \leq s_1$ for all $i \ge 1$, $|b_i| \ge 1$, and $A/\mathbb{Z}(p^{\infty})$ is the quasicentral in $G/Z(p\infty)$;
- 4. $A = (Z(p^{\infty}), B) \times Q_{g}) \times D$, where $Z(p^{\infty}), B, Q_{g}$ is the Sylow 2-subgroup of G, D is the finite abelian group, $Z(p^{\infty}) \leq C(G)$, the finite group B has a normal series: $Z(p\infty)\cap B = \langle B', [B, Q_8] \rangle = B_0 \langle B_1 \langle ... \langle B_i \langle ... \langle B_n \rangle, n \geq 1,$

 $B_i=B_{i,1} \times \langle b_i \rangle$, for all $i \ge 1$, $|b_i|=2$, $|B_0|=2$, and $A/Z(p^\infty)$ is

the quasicentral in $G/Z(p\infty)$;

- 5. $A = (Z(2^{\infty}).B)$. $\langle d \rangle \times D$, where $Z(2^{\infty}).B. \langle d \rangle$ is the Sylow 2 - subgroup of G, D is the finite abelian group, $Z(2^{\infty}) \le C(Z(2^{\infty}).B)$, for each $c \in Z(2^{\infty})$, $d^1cd=c^1$, the finite group B has a normal series : $Z(2^{\infty}) \cap B = \langle B', [B, \langle d \rangle] \rangle = B_0 \langle B, \langle d \rangle$ $\langle B_i \langle ... \langle B_n, n \geq 1, B_i = B_{i,1} \rangle \langle d \rangle$, for all $i \geq 1$, $(Z(p^{\infty}). B) \cap \langle d \rangle =$ $Z(2^{\infty}) \cap \langle d \rangle \leq \langle c_1 \rangle$, $|c_1| = 2$, and $A/Z(p^{\infty})$ is the quasicentral in $G/Z(p^{\infty})$;
- 6. $A=(((Z(2^{\infty}).B).< d>).< d>). Q_g)\times D$, where $Z(2^{\infty}).B$. $Q_g.< d>$ is the Sylow 2- subgroup of G, D is the finite abelian group, $Z(2^{\infty}) \leq C(Z(2^{\infty}).B. Q_{s})$, for each $c \in Z(2^{\infty})$, $d^{-1}cd=c^{-1}$, the finite group B has a normal series:
 - $\langle B_i \leq ... \leq B_{n'} \ n \geq 1, \ B_i = B_{i,1} \searrow \langle b_i \rangle, \ for \ all \ i \geq 1, \ | \ b_1 \ | \ = 2, \ | \ B_0 \ | \ = 2,$ $\mid d \mid = 4$, $(Z(p\infty).B) \cap \langle d \rangle = Z(2^{\infty}) \cap \langle d \rangle$, and $A/Z(p\infty)$ is the *quasicentral in* $G/Z(p\infty)$;
- 7. $A=((((Z(2^{\infty}).B) \leftthreetimes Q_{s}) \times D.B) \leftthreetimes Q_{s}) \times D$, where $Z(2^{\infty}).B.$ Q_{s} is the Sylow 2- subgroup of G, D is the finite abelian group,

 $Z(2^{\infty}) \leq C(Z(2^{\infty}).B)$, $[Z(2^{\infty}), Q_{g}] = Z(2^{\infty})$, the finite group B has a normal series:

 $Z(2^{\infty}).B = \langle B', [B, Q_8] \rangle = B_0 \langle B_1 \langle ... \langle B_i \langle ... \langle B_n \rangle, n \geq 1,$ $B_i=B_{i,1}$) $\leftthreetimes \langle b_i \gt$, for all $i \ge 1$, $|b_i|=2$, $|B_0|=2$ and $A/Z(p^\infty)$ is the quasicentral in $G/Z(p^{\infty})$;

 $A=((Z(2^{\infty}).B).H) \times D$, where $Z(2^{\infty}).B$. H is the Sylow 2-subgroup of G, D is the finite abelian group, $Z(2^{\infty}) \le$ $\leq C(Z(2^{\infty}).B), [Z(2^{\infty}).H] = Z(2^{\infty}), H = \langle a \rangle \times \langle b \rangle, |a| = |b| =$ = 4, [a,b]= a^2 , the finite group B has a normal series:

 $Z(2^{\infty}) \cap B = \langle B', [B,H] \rangle = B_0 \langle B_1 \langle ... \langle B_i \langle ... \langle B_n, n \geq 1, n \rangle \rangle$ $B_i = B_{i,1} \setminus \langle b_i \rangle$, for all $i \ge 1$, $|b_1| = 2$, $|B_0| = 2$, $(Z(2^{\infty}).B) \cap H =$ $=Z(2^{\infty})\cap H=\langle a^2, b^2\rangle$, and $A/Z(p^{\infty})$ is a quasicentral in $G/Z(p^{\infty})$.

Proof. Let G be the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G. By Theorem 1 A is an almost quasicyclic group containing the finite subgroups that are not normal in G, $|A:A\cap G| \le \infty$, and G/A is the Dedekind group. The above mentioned implies that A contains a subgroup $Z(p^{\infty})$ that is normal in G, $A/Z(p^{\infty})$ is the finite Dedekind group and furthermore $Z(p\infty) \le B \le A$. Pursuant to Definition 1 the group B is the infinite subgroup of G. Admittedly, B is normal in Gand the factor group $A/Z(p^{\infty})$ is the quasicentral subgroup of $G/Z(p^{\infty})$. According to Theorem 3.1 [8] the subgroup A satisfies the conditions of this theorem. Evidently, A is the group of one of types 1 to 8 of this theorem.

If A is a group of the type 1 of Theorem 3.1 [8], then A is the Dedekind group, $A = Z(p^{\infty}) \times D$ where D is the finite Dedekind group, p = 2, and D' = <e>. By Lemma 6 $p \mid |D|$, the subgroup A contains element a so that a subgroup $\langle a \rangle$ is not normal p-subgroup in G. Thus A is of the type 1 of this theorem.

If A is a group of one of the types 2 - 8 of Theorem 3.1 [8], then A is a subgroup of one of the types 2-8 of this theorem.

Conversely. If G is a group with the normal subgroup A of one of the types 1 - 8 of this theorem, then G/A is the Dedekind group. G is evidently the locally graded group. Because G/A is the Dedekind group and $A/Z(p^{\infty})$ is the quasicentral subgroup of $G/\mathbb{Z}(p^{\infty})$, then any infinite subgroup contained in A and any subgroup which contains a subgroup A is normal in G. Thus Gis the IAN group.

Let A be an infinite subgroup of G. If the subgroup A is of the type 1 of this theorem, then the subgroup A contains a subgroup $\langle a \rangle$ that is not normal in G. Thus the subgroup A is nonquasicentral subgroup of G.

Thus the quasicentral subgroups of the group G are the Dedekind groups, which implies A is a group of one of the types 2 - 8 of this theorem. Thus A is the non-Dedekind group, which implies that the subgroup A of one of the types 2 - 8 is a nonquasicentral subgroup of G.

COMMUNICATIONS

Theorem 4.

The group G is the IANA group with an infinite non-quasicentral nodal subgroup A, if and only if $A=Z(p^\infty)\times D$, where D is a finite group, $p\mid D\mid$, the subgroup A contains an element A so that A p-subgroup is not normal of A, and $A/Z(p^\infty)$ is the quasicentral in A

Proof. Let G be the locally graded IAN group with the infinite non-quasicentral nodal subgroup A of G, and A' = <e>. Because G/A is the Dedekind group, $A = Z(p) \times D$, where D is the finite abelian group, A contains the finite subgroups that are not normal in G, and G/A is the Dedekind group. The group G is evidently the locally graded IAN group with the nodal subgroup A of the type 1 of Theorem 2, $p \mid D$, the subgroup A contains

an element a so that $\langle a \rangle$ p - subgroup is not normal in G, and $A/\mathbb{Z}(p^{\infty})$ is the quasicentral in $G/\mathbb{Z}(p^{\infty})$.

Let G be a group, A is a subgroup A of G, and $A=Z(p^{\infty})\times D$, where D is a finite group, $p\mid |D|$, the subgroup A contains an element a so that $\langle a \rangle p$ - subgroup is not normal in G, and $A/Z(p^{\infty})$ is the quasicentral in $G/Z(p^{\infty})$.

Conversely. Suppose that $A \subseteq G$ where A is an almost quasicyclic group. Since $A/Z(p^{\infty})$ is a quasicentral in $G/Z(p^{\infty})$, then $B/Z(p^{\infty}) \subseteq G/Z(p^{\infty})$ for all $B/Z(p^{\infty}) \subseteq A/Z(p^{\infty})$. Hence

 $B \subseteq G$, A is the abelian subgroup, every infinite subgroup of A and every infinite subgroup of G containing A is a normal subgroup of G. By Definition 1 the group G is the IANA group. Hence the subgroup A contains the subgroup that is not normal in G, then A is the non-quasicentral in G.

References

- [1] KUROSH, A. G.: The Theory of Groups (2 vols.), New York: Chelsea Publishing Comp., 1969.
- [2] CHERNIKOV, S. N.: The Groups with the Given Properties of the System of their Subgroups (in Russian), Moskva: Nauka, 1980.
- [3] SUBOTTIN, I. J.: The Infinite Groups Generated by the Finite Set in which Every Commutator Subgroup is Invariant (in Russian), Ukr. Mat. zur., vol. 27, No. 3, 1975.
- [4] TOMANEK, L., TOMANKOVA, A.: On One Class of the Infinite Non-abelian Groups, *Communications Scientific Letters of the University of Zilina*, vol. 12, No. 3, 2010, 44-47, ISSN 1335-4205.
- [5] TOMANEK, L.: Groups, Rings and Vector Spaces (in Slovak), EDIS: University of Zilina, 2013, ISBN 978-80-554-0782-1.
- [6] HUNGERFORD, T. W.: Algebra, Springer Science + Business Media, LLC, 1974.
- [7] HALL, M.: The Theory of Groups. New York: The Macmillan Campany, 1959.
- [8] KUZENNYJ, N. F., SUBOTTIN, I. J., TOMANEK, L.: About Some Extensions of the Quasicyclic Groups (in Russian), Zbornik Ped. fak. v Presove, UPJS Kosice, vol. XXIV, No. 1, 1990.