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EXISTENCE OF POSITIVE SOLUTIONS
OF A NONLINEAR DIFFERENTIAL EQUATION WITH n DELAYS

The equation y(t) =—(a + b(t))H ya‘(l‘— Ti) is considered where n is a positive integer, a7, and a,i = 12,..n are positive
=1

constants and conditions on function b are formulated such that the considered equation has positive solutions when t = . The equation is

studied under assumptions

a< 1/(620&1’;),?0& =1
i=1 i=1

Estimation of positive solutions is given as well. The proof is based on the retract technique.
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1. Preliminaries

New mathematical models which involve differential
equations with delay continue to arise with increasing frequency
in the modeling of diverse phenomena in physics, biology,
ecology, and physiology. Often such equations describe various
processes appearing in practice more realistic than differential
equations without delays. Let us consider a motivation example:
Example (Mixing of liquids) [1]

Consider a tank containing / liters of sugar water solution.
Fresh water flows in at the top of the tank at a rate of m liters per
minute. The water solution in the tank is continually stirred, and
the mixed solution flows out through a hole at the bottom, also at
the rate of m liters per minute [Fig. 1]. Determine the amount of
sugar in the water solution in the tank at time 7.

=1

Fig 1 Mixing of liquids
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Solution. Let y(t) be the amount (in kilograms) of sugar
in the solution in the tank at time 7. If we assume continual,
instantaneous, perfect mixing throughout the tank, then the
solution leaving the tank contains y(¢)// kilograms of sugar per
liter, and hence the rate of change of the amount of sugar in the
solution at time ¢ is proportional to my(t)/l. Therefore we can
compose an ordinary differential equation describing the change
of the amount of the sugar in the water solution in the tank at
the time «:

v (1) =="F(1) ()

and

y(%) = Yo

where y, is the amount (in kilograms) of sugar in the solution in
the tank at the initial time 7. It is easy to see that the solution of
(1) is given by the formula

y(t)= yoeXp[—?(t— ).

A disadvantage of the given model is following. As mixing
cannot occur instantaneously throughout the tank it is more
realistic to assume that the concentration of the sugar water
solution leaving the tank at time 7 equals the average concentration
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at some earlier instant, say ¢ - 7. We shall assume that 7 is
a positive constant (often called a time lag or a time delay). Then
the differential equation for becomes a delay differential equation

Y (1) =="Fy(t-1). 2)

Moreover, the speed of mixing can depend also on the
time and then instead of the equation (2) one can consider the
following mathematical model:

Y (1) =="y(t=7(1)) 3)

with a positive bounded function 7(¢).

Models (2) or (3) should give a better description of the
decrement process of amount of sugar in the tank than the model
(1) without delay. Since in all models (1) - (3) it is assumed (and
it is expected) y( t ) > 0 if t = t, we can classify all of them as
problems on existence of a positive solution on interval [#o,00).
In the following part of the paper the problem on existence of
positive solutions is discussed for a class of nonlinear equations.

2. Introduction

Let us consider the following nonlinear first order differential
equation with » delays, more complicated than (3),

3(1)==(a+b][y"(t-7) )

where a,7, and a,i= 1,2,...,n are positive constants,

a< 1/<e§"j am),ioe,- =1, )
i=1 i1

b: [l‘o —T,00) > R"= (O,oo) is a continuous function,
fo € R and T = max;T;. We prove that positive solutions of
(4) exist if relations in (5) hold and b satisfiesy some additional
assumptions. The main role in investigation performed below is
played by the transcendental equation

/'L=aexp<?ti%’ﬂ->. (6)

We show that the transcendental equation (6) has two real
roots and give its properties. The existence of a positive solution
y=)(t) of (4) is proved by utilization of a result on existence of
solutions lying between two auxiliary functions. One of such
functions is in the form of an exponential function constructed
using a real root of (6). The paper is organized as follows. In
subsection 2.1 essential auxiliary result on asymptotic behavior
of solutions of general nonlinear system is cited for the reader’s
convenience (Theorem 1 below). Subsection 2.2 is devoted to the
investigation of the properties of real roots of the transcendental
equation (6). Then in section 3 auxiliary results are applied to

the equation (4). For further results on the existence of positive
solutions and also oscillating solutions to delayed differential
equations we refer, e.g., to monographs [2] - [5], papers [1], [6]
- [14] and to the references therein.

2.1A result based on the retract method
Let C([a,b], R”) where a,b € R,a < b, be the Banach

space of the continuous mappings from the interval [a, b] into
R" equipped with the supreme norm

9L= sw |9(0)

, ¢ eC([a,blR")

where H : H is the maximum norm in R". In the case of ¢ =—T
and b = 0, we shall denote this space as C’7, that is,

i =c([~7,0LR).

If 0 eRA>0, and ye C([o—T,0+AR"),
then, for each 7 €& [O',O' +A], we define y, € C7 by
y.(0)=y(t+06),6 €[-7,0].

We consider a system of retarded functional differential
equations

y(t)=F(t,y,) @)

where F:Q"— R" F = (Fl,...,F,,) is a continuous quasi-
bounded functional which satisfies a local Lipschitz condition
with respect to the second argument and Q" is an open subset
in R X C%. We recall that the functional F is quasi-bounded
if F is bounded on every set of the form [tl,tz] X Ch C Q*,
Hh<t,Cu= C([— T,O],L)and L is a closed
bounded subset of R" (compare [4, p. 305]). In accordance

where

with [5] a function y(#) is said to be a solution of system
(7) on [0—T,0+A) if there are 0 €ER and A > 0
such that y€ C([o—T,0 +A),R"),(t,y) € Q" and
y(t) satisfies the system (7) for £ € [0,0 + A). For given
(O',q)) e Q' we say y(O',gD) is a solution of the system
(7) through (O',gD) if there is an A > O such that y(O',gD)
is a solution of the system (7) on [0 —T,0+A) and
y0<0' ,qD) = . In view of above conditions each element
(O',q)) € Q' determines a unique solution y(O',gD) of the
system (7) through (O' ,(0) € Q" on its maximal interval
of existence [(5p) =[0,a),0 < a=<oo which depends
continuously on initial data ([5]). A solution y(O' ,(p) of the
system (7) is said to be positive if

y(o,0)>0 (8)
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on [O' - T, O'] U Lo foreachi=1,2,..n.1f I(5.9) = [0, 00),
then a nontrivial solution y(O' ,(p) of the system (7) is
said to be oscillatory if (8) does not hold on any subinterval
[01,00) C[O,0),0,=0O.

For continuous vector functions
o =(pnpP2.s), 8 =(8,,6...8,) 1 [to—Too) - R,

with p(1) < 8(t) for ¢ € [to—T,00) (the symbol <
here and below means: p[<t) < 5[(1‘) for all i=1,2,...,n),
continuously differentiable on [¢ 0, 00), we define the set
@:={(t,y):t € [ts,0),p(1) <y < 5(1)}.

In the sequel, we employ the following result being a particular
case of [6, Theorem 1].

Theorem 1. Assume that if 1> to, ¢ € Ci and
(H— 9,¢(9)) € W forany O € [—T,0), then

8/(t) < F(t,0) when ¢,(0)=8,(1), 9)
p/(1) < F(t,9) when $:(0) = p.(1)

Jor any i=1,2,...n. Then there exists an uncountable set Y of
solutions of (1) on [to — T,00) such that each y € Y satisfies

(10)

p) L y(t)<8(),t €to—T,00). (11)
The original Theorem 1 is in [6] proved using the retract

technique combined with Razumikhin’s type ideas, known in

theory of stability of retarded functional differential equations.

2.2 Real roots of a transcendental equation

Let us consider the auxiliary transcendental equation (6).
In the following lemma we prove some properties of its real
solutions.

Lemma 1. Let a, T, and O, i =1,2,...,n be positive
constants, and inequality (5) holds. Then there exist just two
real different positive roots ﬂ.,/ﬁtz of (6) such that A < A
Moreover,

) MY ot <1
b) A T > 1
Proof. Let us define the auxiliary function
fA):=2A-a exp(/li O(fﬁ).
i=1

Looking for its extremal points, we compute its first derivative:
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f/(ﬂ,); =1- azn: a[TielZ:':]a,‘r,.
i=1

Equation f'(A) = 0 has a root

S o _ln<a;aifl>.

. ibi
i=1

A=Ac=—

Since the second derivative f ”(;t) is a negative function,
it is obvious that at Ac the auxiliary function f(ﬂ.) reaches its
maximum. We compute it and conclude

1 n
In(a) oT,)+1

f(lf):_zn T 2 >0

ibi

i=1
if inequality (5) holds. Since f(0)=—a <0 and
f(-i— oo) =—o00, the equation (6) has just two different positive
roots A1, A, satisfying A, < Ae < A,. To prove the part a)

we consider:
Adi=a exp(/ll Zam) <a exp(lezaf’ﬁ)
i=1 i=1

= aexp —%ln(azn: OCKLZ-)Zn: ot
aiTi i=1 i=1

i=1

1 1
=aqa o e .
aZO{,T,-) ZO(,-’L'I-
i=1 i=1

From this we have /11 Z a,T: < 1‘ Since A, > Ae, part

b) holds by the similar argllir:rll(ents. The lemma is proved.
In the proof of the main result we will need estimation of
the expression

slek=n(e= (%)) -0l %)

where € is a constant. The following Lemma gives us a condition

(12)

under that expression (12) is positive.
Lemma 2. If for function inequality

b(t) < a((ln%—ln(ln%)— 1)>,t€ [to,00) (13)
holds, then g(€) > 0.
Proof. Let us define the auxiliary function

fle)=e—4-(%)

looking for its extremal point we compute its first derivative

r(e)=1-4-(%)  m%.

(14)

COMMUNICATIONS 3/2014 o 7

'



COMMVINICIONS

Since the second derivative f ”(8) is negative, function
f({:‘ ) reaches in its extremal point € maximum. To find € we

have to solve equation f (8 ) = (0. We get

L

and after necessary computations we have

in(1n%2)

e=1- )Lz . (16)

For clarity of next computations we use the substitution

A, A _

n-,=-=1:, ie., o —¢- (17)

From (6) and property ) in Lemma 1 it is visible that s > 1.
Now substituting E to (12) and using (15) and (17) we get

gle)=

For the positivity of previous expression function A(#) must
fulfill the following inequality

b(t) < e A(s—Ins—1).

Using (17) we have (13). The lemma is proved

3. Main result

In this section we prove the existence of positive solutions to
equation (4) and give its estimation from above.

Theorem 2. Let b:[to,00) )| < a,t € [ty,o0)
and for (13) be fulfilled. Then equation (4) admits an uncountable
set Y of positive solutions defined on [ty — T,00) such that each
y= y( t ) € Y satisfies inequalities

0<y(t)<e™ (18)

where is defined in Lemma [ and is defined by (16).

Proof. To prove the theorem, we employ Theorem 1 with n =1,
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Hence the set is defined as

el:te"}'

Now, we have to verify the inequalities (9) and (10). In our
case (for = to)

={(t.y):1 € [t —T,0),0 < y(1) <

F(t,9)—8(t)=—(a+b(t Hy t—T)—-8(t)
—(a+b(1 Hy t—T)+ A€ e ™
>—(a+b(t HS“ [—T)+ A€ e ™

_(a—i—b(t))exp( heSali-t )+/'ng*
/’Lz{;‘*—(a+b(t))exp<}tzg*zai1;i>]

= <using exp(lzs*iaﬂ';) = </}ZZ>E>
e —a o As — (1) Ae)
Mol = (2 )= n(o)( 2]
> 0 (due to Lemma?2).

Hence the inequality (9) holds for ¢ € [£,00). To verify the
inequality (10) we have

F(tv¢>_
~(a+b())[ Ty (1~

i=1

e*lus‘

e—lztc'

— e—lus'

p'(t)=—(a+b(t

Hy t—T

7,) < 0.

)—p'(1)

Since both inequalities are fulfilled and all assumptions
of Theorem 1 are satisfied, the conclusion of the theorem is
straightforward of the inequalities (11).

Corollary 1. If y=)(t) is a solution to eq. (4) then also y=C (7),
where C is a constant, is a solution to eq. (4).

Remark. For positive solutions satisfying (18) it holds:
lim,_. y(7) = 0 This follows from that number € defined by
(16) is positive due to the property b) in Lemma 1.
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