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1. Introduction

Attempting to capture the surrounding world and preserve 
it in unchanged form has been a  focus of interest of humans 
since the beginning of time [1]. One of the basic problems of 
this endeavor has been the problem of transforming the three-
dimensional world into a  two-dimensional medium (paper, 
photography, or more recently also computer screen). To this 
end one uses a  particular mathematical transformation called 
projection. It defines how particular points of the mapped 3D 
body (space) are mapped into a  2D surface (plane). There are 
many ways to perform this operation and there are consequently 
many known types of such mappings (projections).

A mapping is call linear if it maps each line onto a line, i.e. 
any three different collinear points into three distinct collinear 
points (points are collinear if they belong to one line).

A  linear mapping in E
2
 with a Cartesian coordinate system 

(O, x, y) can be expressed using the equations: 	
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where the coordinates of a point A are ,x y6 @ and the coordinates 
of a point A’ are ;x yl l6 @. The point A’ is the image of the point A.

Mappings in the three-dimensional space are defined 
analogously to those in the plane. A  linear mapping in E

3
 with 

Cartesian coordinates (O,x,y,z) is defined as follows:
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with point ; ;A x y z= 6 @ and its image point ; ;A x y z= l l l6 @.

Nonlinear mappings are mapping that do not preserve lines, 
and thus deform their image. Such mapping can be defined by 
equations:
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where f(x,y,z), g(x,y,z), h(x,y,z), are nonlinear functions with 
variables x, y and z.

2. 	Applications of nonlinear mappings

Nonlinear mappings have applications in various areas 
such as in computer graphics where they, for instance, form the 
underlying basis of visual deformations and graphical special 
effects (Fig. 1).

Fig. 1 Deformed image

Cylindrical and conical perspectives are examples of 
nonlinear mappings. These mappings are the basis of cartographic 
projections onto cylindrical and conical surfaces which have 
already been in use since the ancient Greece, to construct maps 
of the world and the stars. For illustration, an early example of 
a cylindrical mapping is the so-called Marinus projection – from 
around the first century BC (Fig. 2) and an example of an early 
conical mapping is the Ptolemaic projection – from around 150 
BC (Fig. 3) [2].
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Russian painter Franz Alekseevitch Roubaud (1856-1928) who 
created it in 1912. The painting is 15 meters high, and when 
unwound, it is 115 meters wide. It is located in a  panoramic 
museum in central Moscow [1].

3.	 Fundamentals of cylindrical perspective

In a  cylindrical perspective an image is projected onto 
a  cylindrical surface. Ordinarily it is more common to project 
onto a  plane. So why introduce something like a  cylindrical 
perspective and invent a  complicated process of projecting an 
object on a  cylinder and then transfer it onto the plane? The 
reason is simple – using a  cylindrical perspective we can cover 
up to 360 degrees viewing angle. This cannot be achieved with 
a  planar projection. Another advantage is that if we want to 
capture a very large object, for example, a street or a cityscape, 
we must either be at a great distance, thus losing precision and 
detail, or be closer but not able to capture everything we want. 
Cylindrical perspective allows us to map a  wide object from 
a much smaller distance than what would be needed using other 
methods. Some detail is lost, but not as much as if we were far 
away from the object. So how does a cylindrical perspective work?

Let us have a  cylindrical surface Φ with axis of rotation 
o, radius r (the distance radius) and a  point S, which lies 
on the o  axis. Let

 
E3

 
denote E

3
 augmented with points 

at infinity, and let G be a  rotational conical area bounded 
by conical surface Ψ, axis-aligned with the surface Φ, with 
the point S  as its peak point and apex angle of 90°. Under 
cylindrical perspective the image of a  point A E G3! -  is 
the intersection of the ray SA  with the cylindrical surface Φ, 
 i.e. SAAs +z=  (Fig. 5).

Cylindrical perspective of objects is in descriptive geometry 
constructed by unwinding the cylindrical surface Φ. The 

Fig. 2 Marinus projection currently 

Fig. 3 Ptolemaic projection currently

As far as applications in engineering and technology, we find 
cylindrical perspective in panoramic cinemas where the image is 
projected onto a wide screen curved into the shape of a cylindrical 
surface.

In art, especially in the 19th century, painters often captured 
significant historical events in panoramic paintings (of which only 
33 are known to have survived until this day). Such event was, 
for example, the battle of Lipany. The author of this panoramic 
painting is Luděk Marold (1865-1898). Another painting using 
a cylindrical perspective is the Battle of Borodino (Fig. 4) by the 

Fig. 4 F. A. Roubaud: Battle of Borodino
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intersection of the surface Φ with the plane through the center 
S  and orthogonal to the o  axis is the circle h (horizon). By 
unwinding the horizon we obtain the line segment h

0
, whose 

length is 2πr. The images of points in the unwound cylindrical 
perspective are located within the rectangle whose middle 
segment is h

0
 and whose height is 2r (Fig. 6).

Consider a point A = [Ax; Ay; Az] in the Cartesian coordinate 
system (S, x, y, z). In the plane of the unwound cylindrical surface 
Φ consider a  Cartesian coordinate system (O, x’, y’) where the 
point O = h +  x and x’ ≡ h

0
.

Let A
s
 be the image of the point A  in the cylindrical 

perspective, and let Ax’, Ay’ be its coordinates in the unwinding of 
the cylindrical surface Φ.

The coordinate Ax’ of the point A
s0
 is equal to the length of 

the arc of the horizontal circle h bounded by the point O and the 
intersection of the horizon with the vertical (generating) line of 
the cylindrical surface passing through the point A

s
. If t is the 

magnitude (in radians) of the angle spanned by this arc, then the 
coordinate satisfies Ax’ = r . t. The coordinate Ay’ is equal to the 
distance of the point A

s
 from the aforementioned intersection. 

Consequently the mapping equations of the cylindrical perspective 
can be formulated as follows:
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Fig. 6 Image point after unwinding area

Fig. 7 Cartesian and cylindrical coordinates Fig. 8 Coordinates in the plane unwinding

Fig. 5 The projection of the point
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we obtain the expression for the z-coordinates of the points of the 
cut k (the intersection of Φ and α):

sin sinz r
b
y r
b
r t b t$ $ $ $= = = .

If b ≠ 0, then the intersection of Φ with the plane α is 
the ellipse k. The coordinates of the points of the ellipse after 
unwinding the cylindrical surface are: x’ = r . t , y’ = z = b . sint, 
thus the unwound ellipse forms a part of a sinusoid which can be 

expressed in the form of the function: siny b r
x

$=l
l
.

Theorem 3: Let α ∩  α ‘= p, where p is the diameter of the 
circle h. Then unwinding the ellipses k  and k’ produces sinusoids 
where one is

 
an affine projection of the other, with the axis of the 

affinity being h
0
 and the direction perpendicular to the axis.	

Fig. 13 α ∩  Φ = k

Proof: Using the proof of Theorem 2, let α ∩ α’ = x and let the 

angle of the plane α ‘with π = (x, y) be φ’, i.e. tan φ ‘= r
bl  (Fig. 14). 

For the coordinates of the points on the ellipse k’ after unwinding 
the surface, we have: x’ = r . t and y’ = z = b’  . sint. From both 
expressions for y’, it follows that the affinity with axis x’ ≡ h

0
, with 

the direction perpendicular to the axis, and with characteristic 
b
b
l
, 

maps the sinusoid k
0
 to the sinusoid k’

0
 (Fig. 15).

When unwinding the curve that is cut on the surface by the 
plane, we assume that its starting point either lies on the positive 
part of the x-axis, or lies on a  line parallel to the x-axis with 
a positive x-coordinate.

Let (S, x, y, z) be a  given Cartesian coordinate system and 
let A = [Ax; Ay; Az] be a given point. Let Φ be a given cylindrical 
surface. Since SA As +z= , we can derive, from the Cartesian 
coordinates of the point A

s
, the cylindrical coordinates: x = r . cos t, 

 y = r . sin t, z = u (Fig. 7). After unwinding the cylindrical surface 
Φ into a  plane, in this plane we can define a  new Cartesian 
coordinate system (O, x’, y’) in which Ax’ = r . t  and Ay’ = u (Fig. 8).

To find an image of a line in the cylindrical perspective it is 
important to determine what its relative position with respect to 
the center of projection S is and also with respect to the o axis of 
the cylindrical surface Φ.

Theorem 1: For a cylindrical perspective of a line p (p ≠ o) the 
following holds [3]:
a)	 If S ∈  p, then the image of p are two points p

s
 and p

s
’, namely 

the points of intersection of the line p with the cylindrical surface 
Φ (Fig. 9).

b)	 If p and o are parallel, then the image of p is the generating line 
p

s
 of the cylindrical surface Φ (Fig. 10).

c)	 If p and o are intersecting, then the image of p is formed by two 
rays located at generating lines of the cylindrical surface Φ (Fig. 
11).

d)	 If none of the conditions a) - c) holds, then the image of p is 
a semi-ellipse or a semi-circle (Fig. 12).

Theorem 2: Unwinding an ellipse lying on a cylindrical surface 
Φ yields a part of the sinusoid [4].
Proof: The parametric equations of points on a  rotational 
cylindrical surface Φ around the axis z with radius r are as follows: 
x =  r . con t, y = r . sin t, z = u, , )t 0 2! r , u !  R. Consider 

a plane α containing the x-axis forming an angle tan r
b{ { =a k 

with the plane (x, y) (Fig. 13). Then the analytical expression of 

the points on the plane α is: z r
b
y$= . Substituting y = r . sin t, 

      Fig. 9 S ∈  p                           Fig. 10 p ║ o                                   Fig. 11 p ∩ o = {A}                                    Fig. 12 Skew lines o, p
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4. Fundamentals of conical perspective

In this section, we discuss the conical perspective, i.e. 
a  mapping onto a  rotational conical surface Ψ from a  point 
S  (center of projection) of its axis (the point S  is distinct from 
the peak point V of this conical surface). The field of view of the 
conical perspective, i.e. a restricted part P3l of the space P E3 3= , 
 can be determined similarly as for the cylindrical perspective.

Consider a rotational conical surface Ψ with axis o and point 
S which lies on the o axis.

Then, a conical perspective of a point A P3! l is the point 
of the intersection of the ray SA  with the conical surface Ψ, i.e. 

SAAs += Ψ (Fig. 16).

Fig. 16 Conical perspective of a point

If there are two intersection points of the ray SA  with the 
conical surface Ψ, the conical perspective of A is defined to be the 
point that is closer to the point S [4].

Let us fix a coordinate system (S, x, y, z) in P3l and consider 
a  conical surface Ψ with axis z, where ω is the angle of the 
generating line with the axis. In a conical perspective with center 
S onto the surface Ψ with radius r of the horizon, the image of 
A

s
 = [Asx; Asy; Asz] of a point A = [Ax; Ay; Az] satisfies the following 

equations:

,

,

.

x
y

r x

y ztg x x y

r

y ztg x x y

r y

ztg x x y

y
y

z
z

As

A A

A

As

A A A A A

A

As

A A A A A

A A

A A A

2

2 2

2

2 2

2 2

~

~

~
=

=
+ +

=
+ +

+ +

The first step in the construction of the image of a point in 
the conical perspective is to construct the point SAAs += Ψ 
(Fig. 17) which we usually perform using orthographic 
(Monge) projection. The next step is to unwind the conical 

Fig. 13 a k+z =

Fig. 14 Cuts on the cylinder

Fig. 15 Affine relationship of ellipses
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to the unwound position of the generating line of the conical 
surface that lies in the plane (x, z) (Fig. 18). Then the mapping 
equations of the unwound position are as follows:
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For the image of a  line in a  conical perspective (just like 
with cylindrical perspective) it is important to determine what its 
position with respect to the center of projection S is and also with 
respect to the o axis of the conical surface Ψ.

Fig. 19 S ∈  p                               Fig. 20 p ║ o

  Fig. 21 p ∩ o = {A}                    Fig. 22 Skew lines o, p
Theorem 4: If we consider also lines which are located outside 

the field of view, then for a conical perspective of a line p (p ≠ o) the 
following holds [3]:
a)	 If S ∈  p, then its image are two points p

s
, p

s’
, namely the points 

of intersection of the line p with the conical surface Ψ (Fig. 19).

surface Ψ into the plane. This allows us to obtain the angle 
sin360 $a ~=c c , or sin2 $a r ~=  (in radians) where the 

angle of generating lines with the axis is ~ .

Fig. 17 Construction of image point

Fig. 18 Unwound surface

Generating lines of the conical surface are unwound into 
a pencil of lines with center V

0
 and parallel circles map onto arcs 

of concentric circles whose center is again V
0
 (Fig. 18).

Let A
s0
 be the location of the point A

s
 after unwinding the 

surface Ψ where A
s0
 = [x’; y’] are the coordinates of A

s0
 in the 

Cartesian coordinate system (O, x’, y’). The coordinate x’ is equal 
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b)	 If p is parallel to o, then its image is p
s
 – a part of a generating 

line of the conical surface Ψ starting at the peak point (Fig. 20).
c)	 If p intersects o, then its image is formed by two rays (or 

segments) lying on generating lines of the conical surface Ψ 
(Fig. 21).

d)	 If none of the conditions a) – c) holds, then the image of p is part 
of a conic section (Fig. 22).
An image of a  conic section lying in one plane with the x 

axis is, after unwinding the conic surface, a curve with parametric 
equations as follows:
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where ω is the angle of generating lines of the conical surface Ψ 
with axis of rotation z, and φ is the angle of the projection plane 
with the plane of the horizon; t is a parameter.

5.	 Instead of final words

Exercise: Construct an image of the segment AB in conical 
perspective, if SAB=ν and o=π.

Construction: The first step is to construct a  design cut k
1
 

conical surface Ψ of plane SAB (A
s1
,  B

s1
 ∈  k

1
) in Monge’s 

projection (Fig. 23). The next step is to unwinding the conical 
surface Ψ together with a cut k and with the points A

s
, B

s
 into the 

plane (Fig. 24).
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Fig. 23 The segment before unwinding the surface
               

Fig. 24 Segment after unwinding
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