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NON-LINEAR MAPPINGS AND THEIR APPLICATIONS

In this contribution we discuss selected geometrical mappings that, although uncommon in practice, are important and irreplaceable in

some areas of engineering, architecture and art (scenography, embossing, panoramic cinematography ).
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1. Introduction

Attempting to capture the surrounding world and preserve
it in unchanged form has been a focus of interest of humans
since the beginning of time [1]. One of the basic problems of
this endeavor has been the problem of transforming the three-
dimensional world into a two-dimensional medium (paper,
photography, or more recently also computer screen). To this
end one uses a particular mathematical transformation called
projection. It defines how particular points of the mapped 3D
body (space) are mapped into a 2D surface (plane). There are
many ways to perform this operation and there are consequently
many known types of such mappings (projections).

A mapping is call /inear if it maps each line onto a line, i.e.
any three different collinear points into three distinct collinear
points (points are collinear if they belong to one line).

A linear mapping in E, with a Cartesian coordinate system

(0, x, y) can be expressed using the equations:
X' =ax+ay+as

, (1

y = b1x+b2y+b3,

where the coordinates of a point 4 are [x, y] and the coordinates
of a point A’ are [J’C; }’)] The point 4’ is the image of the point A.

Mappings in the three-dimensional space are defined
analogously to those in the plane. A l/inear mapping in E, with
Cartesian coordinates (0,x,),z) is defined as follows:

X' =ax+ay+az+a,
Yy =bx+b,y+biz+b, (2)
7 =cx+cy+ceiztc,

with point A = [x;y;z] and its image point A = [x';y';z'].
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Nonlinear mappings are mapping that do not preserve lines,
and thus deform their image. Such mapping can be defined by
equations:

x' = fx,y,2)
y =g(x,y,2) 3)
7 = h(x,,2)

where f(x,y,z), g(xyz), h(x,y,z), are nonlinear functions with
variables x, y and z.

2. Applications of nonlinear mappings

Nonlinear mappings have applications in various areas
such as in computer graphics where they, for instance, form the
underlying basis of visual deformations and graphical special

effects (Fig. 1).

Fig. I Deformed image

Cylindrical and conical perspectives are examples of
nonlinear mappings. These mappings are the basis of cartographic
projections onto cylindrical and conical surfaces which have
already been in use since the ancient Greece, to construct maps
of the world and the stars. For illustration, an early example of
a cylindrical mapping is the so-called Marinus projection - from
around the first century BC (Fig. 2) and an example of an early
conical mapping is the Ptolemaic projection - from around 150
BC (Fig. 3) [2].
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Fig. 3 Ptolemaic projection currently

As far as applications in engineering and technology, we find
cylindrical perspective in panoramic cinemas where the image is
projected onto a wide screen curved into the shape of a cylindrical
surface.

In art, especially in the 19th century, painters often captured
significant historical events in panoramic paintings (of which only
33 are known to have survived until this day). Such event was,
for example, the battle of Lipany. The author of this panoramic
painting is Ludék Marold (1865-1898). Another painting using
a cylindrical perspective is the Battle of Borodino (Fig. 4) by the
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Russian painter Franz Alekseevitch Roubaud (1856-1928) who
created it in 1912. The painting is 15 meters high, and when
unwound, it is 115 meters wide. It is located in a panoramic
museum in central Moscow [1].

3. Fundamentals of cylindrical perspective

In a cylindrical perspective an image is projected onto
a cylindrical surface. Ordinarily it is more common to project
onto a plane. So why introduce something like a cylindrical
perspective and invent a complicated process of projecting an
object on a cylinder and then transfer it onto the plane? The
reason is simple - using a cylindrical perspective we can cover
up to 360 degrees viewing angle. This cannot be achieved with
a planar projection. Another advantage is that if we want to
capture a very large object, for example, a street or a cityscape,
we must either be at a great distance, thus losing precision and
detail, or be closer but not able to capture everything we want.
Cylindrical perspective allows us to map a wide object from
a much smaller distance than what would be needed using other
methods. Some detail is lost, but not as much as if we were far
away from the object. So how does a cylindrical perspective work?

Let us have a cylindrical surface @ with axis of rotation
o, radius r (the distance radius) and a point S, which lies
on the o axis. Let E denote E, augmented with points
at infinity, and let G be a rotational conical area bounded
by conical surface ¥, axis-aligned with the surface @, with
the point S as its peak point and apex angle of 90°. Under
cylindrical perspective the image of a point A € E5— G is
the intersection of the ray SA with the cylindrical surface @,
ie. A,=SAN ¢ (Fig. 5).

Cylindrical perspective of objects is in descriptive geometry
constructed by unwinding the cylindrical surface @. The

Fig. 4 F. A. Roubaud: Battle of Borodino
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intersection of the surface @ with the plane through the center
S and orthogonal to the o axis is the circle # (horizon). By
unwinding the horizon we obtain the line segment /;, whose
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length is 27zzr. The images of points in the unwound cylindrical
perspective are located within the rectangle whose middle
segment is /1) and whose height is 2r (Fig. 6).

Consider a point 4 = [“x; 1y; “z] in the Cartesian coordinate
system (S, x, », z). In the plane of the unwound cylindrical surface
@ consider a Cartesian coordinate system (O, x’, y’) where the
point 0=/ N xand x"= A,

Let A be the image of the point 4 in the cylindrical
perspective, and let “x’, 4y’ be its coordinates in the unwinding of
the cylindrical surface @.

The coordinate “x’ of the point A, is equal to the length of
the arc of the horizontal circle # bounded by the point O and the
intersection of the horizon with the vertical (generating) line of
the cylindrical surface passing through the point 4. If 7 is the
magnitude (in radians) of the angle spanned by this arc, then the
coordinate satisfies “x’ = r - t. The coordinate “y’ is equal to the
distance of the point 4 from the aforementioned intersection.
Consequently the mapping equations of the cylindrical perspective
can be formulated as follows:
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Fig. 7 Cartesian and cylindrical coordinates

Fig. 8 Coordinates in the plane unwinding
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Let (S, x, y, z) be a given Cartesian coordinate system and
let A = [“x; 1y; z] be a given point. Let @ be a given cylindrical
surface. Since A, = SAN @, we can derive, from the Cartesian
coordinates of the point 4, the cylindrical coordinates: x = r- cos 7,
y=r-sint, z=u (Fig. 7). After unwinding the cylindrical surface
@ into a plane, in this plane we can define a new Cartesian
coordinate system (O, x’, ") in which“x’=r- ¢ and “y’= u (Fig. 8).

To find an image of a line in the cylindrical perspective it is
important to determine what its relative position with respect to
the center of projection S is and also with respect to the o axis of
the cylindrical surface @.

Theorem 1: For a cylindrical perspective of a line p (p # o) the

following holds |3):

a) If S € p, then the image of p are two points p_and p_, namely
the points of intersection of the line p with the cylindrical surface
@ (Fig. 9).

b) If p and o are parallel, then the image of p is the generating line
p, of the cylindrical surface @ (Fig. 10).

¢) If p and o are intersecting, then the image of p is formed by two
rays located at generating lines of the cylindrical surface @ (Fig.
11).

d) If none of the conditions a) - ¢) holds, then the image of p is
a semi-ellipse or a semi-circle (Fig. 12).

Theorem 2: Unwinding an ellipse lying on a cylindrical surface
D yields a part of the sinusoid [4].
Proof: The parametric equations of points on a rotational
cylindrical surface @ around the axis z with radius r are as follows:
xX=r-cont,y=r-sint,z=u, t € <0,27Z), u € R. Consider

a plane ¢ containing the x-axis forming an angle go(tan Q= ?)
with the plane (x, y) (Fig. 13). Then the analytical expression of

the points on the plane a is: z = % y. Substituting y = - sin 7,
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Fig. 11pMo={[A4)

Fig. 12 Skew lines o, p

we obtain the expression for the z-coordinates of the points of the
cut k (the intersection of @ and a):
b b

Z=Fy=-r-sint=b-sint.

If b # 0, then the intersection of @ with the plane o is
the ellipse k. The coordinates of the points of the ellipse after
unwinding the cylindrical surface are: x’=r- ¢,y =z =b- sint,
thus the unwound ellipse forms a part of a sinusoid which can be

’

expressed in the form of the function: y' = b - Sinx7.

Theorem 3: Let a (N a = p, where p is the diameter of the
circle h. Then unwinding the ellipses k and k' produces sinusoids
where one is an affine projection of the other, with the axis of the
affinity being hy and the direction perpendicular to the axis.

Fig. 13a M &=k

Proofi Using the proof of Theorem 2, let M @’ = x and let the

angle of the plane o ‘with 7= (x, y) be ¢, i.e. tan ¢ ‘= bT (Fig. 14).
For the coordinates of the points on the ellipse &’ after unwinding
the surface, we have: x’=r-tand y’'=z = b’ - sint. From both
expressions for y’, it follows that the affinity with axis x"= A, wit,h

the direction perpendicular to the axis, and with characteristic B
maps the sinusoid k; to the sinusoid k', (Fig. 15).

When unwinding the curve that is cut on the surface by the
plane, we assume that its starting point either lies on the positive
part of the x-axis, or lies on a line parallel to the x-axis with
a positive x-coordinate.
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Fig. 14 Cuts on the cylinder
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Fig. 15 Affine relationship of ellipses

COMMVINICIONS

4. Fundamentals of conical perspective

In this section, we discuss the conical perspective, i.e.
a mapping onto a rotational conical surface ¥ from a point
S (center of projection) of its axis (the point S is distinct from
the peak point V of this conical surface). The field of view of the
conical perspective, i.e. a restricted part P; of the space P; = E
can be determined similarly as for the cylindrical perspective.

Consider a rotational conical surface ¥ with axis o and point
S which lies on the o axis.

Then, a conical perspective of a point A € P; is the point
of the intersection of the ray SA with the conical surface Y, ie.
A, = SANY (Fig. 16).

Fig. 16 Conical perspective of a point

If there are two intersection points of the ray SA with the
conical surface ¥, the conical perspective of 4 is defined to be the
point that is closer to the point S [4].

Let us fix a coordinate system (S, x, y, z) in P; and consider
a conical surface ¥ with axis z, where « is the angle of the
generating line with the axis. In a conical perspective with center
S onto the surface ¥ with radius r of the horizon, the image of
A = [*x; My, #z] of a point A = [*x; 4y; *z] satisfies the following
equations:

by = roAx?
AyAZtgw+AxJAx2+Ay2’

A2

S J— r y
Ay_A A Ao A2 A2
yiztgw + x/ X +"y

b — r'y'z

= .
AyAZtga)_,’_Ax\/sz_i_AyZ

The first step in the construction of the image of a point in
the conical perspective is to construct the point A, = SAny
(Fig. 17) which we usually perform using orthographic
(Monge) projection. The next step is to unwind the conical
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surface ¥ into the plane. This allows us to obtain the angle
a® =360"-sinw, or ¢ =27 -sinw (in radians) where the
angle of generating lines with the axis is @.

h()

Fig. 18 Unwound surface

Generating lines of the conical surface are unwound into
a pencil of lines with center ¥ and parallel circles map onto arcs
of concentric circles whose center is again ¥ (Fig. 18).

Let 4, be the location of the point 4 after unwinding the
surface ¥ where A = [x} y] are the coordinates of 4 in the
Cartesian coordinate system (O, x’, »"). The coordinate x’is equal

REVIEW

to the unwound position of the generating line of the conical
surface that lies in the plane (x, z) (Fig. 18). Then the mapping
equations of the unwound position are as follows:

Y= r/ At (tw + 1)+ %2 (7 + 1y tew)
tew (“y ztgw + *x/x* + 4 y*)

A
sin arcsin(—sziA = )sina) ,
y
g = o T’x/AX4<tngU+ 1)+AX2(AXZ+AthgCO)
SIn tga)(AyAZtga)+Ax\/Ax2+Ayz)
A
cos arccos( Ty )sina) .

For the image of a line in a conical perspective (just like
with cylindrical perspective) it is important to determine what its
position with respect to the center of projection S is and also with
respect to the o axis of the conical surface ¥.

Fig. 21 pM o = [A]
Theorem 4: [f we consider also lines which are located outside

Fig. 22 Skew lines o, p

the field of view, then for a conical perspective of a line p (p # o) the

following holds |3):

a) If'S € p, then its image are two points p, p_, namely the points
of intersection of the line p with the conical surface ¥ (Fig. 19).
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b) If pis parallel to o, then its image is p_- a part of a generating
line of the conical surface V starting at the peak point (Fig. 20).

c¢) If p intersects o, then its image is formed by two rays (or
segments) lying on generating lines of the conical surface ¥
(Fig. 21).

d) If none of the conditions a) -
of a conic section (Fig. 22).
An image of a conic section lying in one plane with the x

axis is, after unwinding the conic surface, a curve with parametric

¢) holds, then the image of p is part

equations as follows:

2

rcost n rsint
1 + tga)tgq) sint 1 + tgwtg@sint
x = cos(tsinw)
_ rtggsint

tga)

1+ tgwtg@sint

rcost n rsint
(tsin®) 1+ tgwtggo sint 1 +tgwtg@sint
y = sin(zsin  rgpsint

tga)

1+ tgwtg@sint

hy

T152

p
P’

Fig. 23 The segment before unwinding the surface
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where  is the angle of generating lines of the conical surface ¥
with axis of rotation z, and ¢ is the angle of the projection plane
with the plane of the horizon; ¢ is a parameter.

5. Instead of final words

Exercise: Construct an image of the segment AB in conical
perspective, if S4By and o L.

Construction: The first step is to construct a design cut k,
conical surface ¥ of plane SAB (4, B, € k) in Monge’s
projection (Fig. 23). The next step is to unwinding the conical
surface ¥ together with a cut £ and with the points 4, B_into the
plane (Fig. 24).

Fig. 24 Segment after unwinding

[1] DRABEK, K., HARANT, F., SETZER, O.: Descriptive Geometry - part II (in Czech), Praha : SNTL, 1979, ISBN 04-007-79, pp. 9,

47-51.

[2] VAJSABLOVA, M.: Cartographic Projections from the Perspective of Constructive Geometry (in Slovak), Proc. of the Seminar on

Computer Geometry SCG’99, Kocovce, 1999.

[3] VAJSABLOVA, M.: Methods of Display (in Slovak), online http://www.svf.stuba.sk/docs/dokumenty/skripta/metody_zobrazovania/

index.html (accessed February 2014).

[4] MEDEK, V., ZAMOZIK, J.: Constructive Geometry for Engineers (in Slovak), Bratislava : Alfa, 1978, ISBN 63-552-76, pp. 425-430.

COMMUNICATIONS 3/2014

8





