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NUMERICAL FINITE ELEMENT METHOD HOMOGENIZATION
OF COMPOSITE MATERIALS REINFORCED WITH FIBERS

The paper presents the micromechanical modelling of fiber-reinforced composites in order to determine elastic properties of the homoge-

nized material. For this purpose implementation of homogenization theory was required and analyses were performed. The polymer matrix
of three-dimensional representative volume element (RVE) of the composites is modelled by the finite element method (FEM). Software for
homogenization of material properties uses direct homogenization method which is based on volume average of stresses in the RVE. Homoge-
nization of composite plate is performed by linking MATLAB and ANSYS software. Calculated elastic properties of the homogenized material
are given for epoxy matrix reinforced with carbon, fiberglass and kevlar fiber material.
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1. Introduction

Modern materials are characterized by a wide spectrum

of tailored mechanical, optical, magnetic, electronic, or
thermomechanical properties. Using of laminated composites
allows the designer to optimize material/structural systems which
complicates their analysis. The prediction of the macroscopic
stress-strain response of the composite material is related to the
description of its complex microstructural behavior [1 and 2].
Some analytical and numerical techniques have been used for
prediction and characterization of composite microstructure
behavior [3]. Analytical methods provide reasonable prediction
for relatively simple configurations of the phases. Complicated
geometries, loading conditions and material properties often
do not yield analytical solutions, due to complexity and number
of equations. In this case, various numerical methods [4 - 7] are
used for approximate solving, but they still make some simplifying
assumptions about the microstructures of heterogeneous
multiphase materials.

In homogenization process the original heterogeneous
material is replaced by homogeneous material with the same
mechanical properties. In other words, homogenization and
averaging of properties and micro-fields of the material are
considered as a homogeneous equivalent medium at the macro-
level, and the effective properties of the medium are determined
on the basis of the analysis of the microstructure, micro-geometry

and properties of the materials.
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Direct
homogenization is based on the volume average of field variables,

There are various homogenization methods.

such as stress, strain and energy density. Effective properties can
be calculated from effective properties definitions. The average
and calculation of field variables can be performed numerically,
for example, by finite element method (FEM) or boundary
element method and geometry and microstructural properties
can be generalized for real composite materials which do not
have periodic structure distribution of the fibers in the matrix [8].

Indirect homogenization is based on the Eshelby solution
of self-deformation for one inclusion in an infinite matrix - the
equivalent inclusion method [9]. An alternative approach to
direct and indirect homogenization is the variational method
which can determine the upper and lower limits of the elasticity
modulus [10].

A relatively new approach for homogenization of
microstructures consists of mathematical homogenization based
on a two-scale extension of the displacement field [11].

2. Methodology

The composite under consideration is constituted by
continuous and parallel cylindrical fibers with equal radius
and centers periodically spaced in a hexagonal and a squared
array, as it appears in Fig. 1. We assumed an ideal cohesion

between the fiber and the matrix. A procedure of homogenization
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of material properties of composites using the method of
representative volume element RVE was used. For the analysis of
material properties an own software in MATLAB language was
programmed and a part of the solution was carried out in ANSYS
software. The RVE consists of volume elements SOLID45 (Fig.
2) and then it is loaded by unit strains in various directions. The
effective lamina properties are obtained from the volume means
of stress values obtained by loading of the RVE.

2
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Fig. 1 Representative volume elements, a) square configuration,
b) hexagonal configuration

a) b)
Fig. 2 The finite element mesh adopted in the computation,

a) square configuration, b) hexagonal configuration

Homogenized lamina RVE consists of fibers and epoxy
matrix. The fibers are from three material types: carbon, glass,
polyaramide. Used carbon fibers have an industrial label T300 and
M40J. The glass fiber label is EGlass and S2Glass. Polyaramide
fibers have the label K49. Fiber material properties are listed in
Table 1 and the matrix properties are listed in Table 2.
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Fiber material properties Table 1
Fiber material
Fiberglass
Carbon M40J $2Glass Kevlar K49
E, |GPa] 371 85.5 135.5
F, [GPa] 4.41 4.6 3.53
v 0.33 0.22 0.37
p,, [kg/m’] 1770 2490 1450
d [um] 5 10 10
Matrix material properties Table 2
Matrix | E [GPa] [ F, [MPa] v P, [kg/m*] | G, [GPa]
material ‘
Epoxy 3.45 70 0.3 85.5 1.33

where subscript “ f” denotes fiber and “ m” matrix, respectively and
E - Young modulus v - Poisson number
G - Shear modulus p - Density

F,, - Longitudinal tensile strength d/ - fiber diameter

The RVE dimensions are calculated for the square fiber
configuration - Fig. 1a, from the relations

d2
a2=4/%7€/ff,a3=az,a1=0.5az )

and for a hexagonal fiber configuration the RVE dimensions are
in Fig. 1b, from the relations

L _md :
a=,/¢ Vfl‘g(60°) , A3 = > tg(60 ), )

a,=05a,
where a, is the x-direction, in this case the fiber direction, a, is
the y-direction, orthogonal to the fiber direction, a, is z-direction,
transverse vertical to the fiber direction and Vf is fiber volume
fraction.

Analysis of microstructure directly yields a transversely

isotropic stiffness tensor

(o Cn Cn Cp 0 0 0][én
0n Cn Cn Cyn 0 0 0]|éx»
6'33>: Cn Cyn Cxn 0 0 0 6:'33 3)
o 0 0 0 1/2(C=Cx) 0 0 |72
01 0 0 0 0 Css 0 ||V
On 0 0 O 0 0 Ceo( V1]

where the 1-axis is aligned with the fiber direction and the over-
bar indicates the average computed over the volume RVE. The
components of the tensor C are determined by solving three
elastic models of RVE with parameters (a,, a,,a,), subjected to the
boundary conditions on the following displacement components.
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u(any,z)—ui(—a,y,z) = 2a €,
—azSySaz, 4)
—a; <7< as;,

u (X,a2,2) — uy (x, — a»,z) = 2a, €5,
—a,<x=<a, ®)
—a; <7< a,,

u (x,y,as) = ui (x,y, — as) = 2a; €,
—d <x=< a, (6)
—a, < y < as,

For the homogeneous composite material, the relationship
between average stress and strain is

Oo=Cop€p (7

a, p = 1,..,6 is the contracted notation given in [12]. This implies
that elements of the matrix C are determined by solution of
six elastic RVE models in which boundary conditions (4-6)
are applied for only one component of the strain 8%. This
component is different from zero for each of the six problems.
Once the components of the transversely isotropic tensor C are
known, the five elastic properties of the homogenized material
can be computed by [13]:

E=Ci— ZC%z/(sz + C23>

Vip = C12/<C22 + C23>

E;=(Cu(Con+ Cxu)=2CH)(Cra— C)/(C1iCa—= Ch) (8)
Va3 = (Cuczs - C%z)/(Cnsz - C%z)

Gin==Cg

where £, and E, are longitudinal and transversal Young’s moduli,
v,,and v, are longitudinal and transversal Poisson’s ratios and G,
is the longitudinal shear modulus. The shear modulus G,, in the
transversal plane can be obtained using classical relation between
Young modulus £ and shear modulus G, so
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In order to evaluate the elastic matrix C of the composite, the
RVE is subjected to an average strain € 5. The unit strain applied
on the boundary results in a complex state of stress in the RVE.
Then the volume average of the strain in the RVE equals to
the applied strain

&= %fveudv =&} (10)

Then volume average of stress in RVE equals to required
components of the elastic matrix as
_o=_ 1
Cij_ O_[—V O-;dv (11)
v
The coefficients in C are found by setting a different problem
for each column of C and the components. Details of the

procedure for calculation of the coefficients of the matrix C are
given in [14].

3. Results

Homogenization of a composite plate is performed by linking
MATLAB and ANSYS software. Homogenization of the material
properties were done for fiber volume fractions Vf from the
interval <0.2, 0.6>. The entire process is automated requires just
entering a type of fibers, their arrangement and the step increment
volume fraction. The finite element code ANSYS 11.0 is used
to solve the problem described above. The matrix and fibers are
modeled by linear elastic isoparametric brick elements with eight
nodes and six faces (i.e. the ANSYS SOLID elements). FE mesh
is symmetric with respect to the coordinate planes.

In Figs. 3 to 6 deformed shapes and contour plots of stresses
for different strains applied to stretch the RVEs are described.
The boundary conditions in the calculation of the sixth column
of C are enforced by using coupling constraint equations (CE).
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Fig. 3 Deformed shape and contour plot of stress O 11, €5 = 1, €5 = €3 = '}’2 = '}/(s) = '}’2 =0
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Fig. 4 Deformed shape and contour plot of stress O 22,

=1 =¢€= ’)/2 = '}’2 = ')/(6) =0 Fig. 6 Deformed shape and contour plot of stress T 13,
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Fig. 7 Effective elastic constants E, and E, vs. Vf
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Fig. 8 Effective elastic constants G,,and G,, vs. Vf
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Fig. 9 Effective elastic constants v,, and v, vs. Vf
Calculated elastic properties of the composite with fiber volume fraction Vf= 0.6 Table 3
M40J S2Glass K49
V,=0.6
h s h S h S
E, [GPa] 227.58 227.58 52.683 52.687 82.683 82.685
E, [GPa] 12.831 16.71 11.607 14.334 12.121 15.301
G, [GPa] 5.15 5.53 4.67 494 4.844 5.155
G,, [GPa] 4.737 6.967 43314 5.905 4.481 6.288
Vi 0.320 0.321 0.246 0.245 0.347 0.348
Vs 0.354 0.199 0.340 0.214 0.352 0.217

In Figs. 7 to 9 courses of the homogenized elastic material
properties for hexagonal array computed using equations (8)
are described. Calculated elastic properties of the homogenized
material for V= 0.6 are given in Table 3 where the indices “h” and
“s” denote hexagonal array and square array, respectively.

4. Conclusions
Accurate and efficient methods have been proposed within

the framework of the displacement-based FEM for solving the
unit cell homogenization (RVE) problem for periodic composites.

The modelling procedure is explained briefly in this paper. If one
wishes to perform a parametric study, repeating this process on
an interactive session, using the CAE graphical user interface
(GUI) is very time consuming and prone to errors. Instead, it is
possible to capture the ANSYS script generated by CAE during
an interactive session and use it to automate the process.
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