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1.	 Introduction   
	
Modern materials are characterized by a  wide spectrum 

of tailored mechanical, optical, magnetic, electronic, or 
thermomechanical properties. Using of laminated composites 
allows the designer to optimize material/structural systems which 
complicates their analysis. The prediction of the macroscopic 
stress-strain response of the composite material is related to the 
description of its complex microstructural behavior [1 and 2]. 
Some analytical and numerical techniques have been used for 
prediction and characterization of composite microstructure 
behavior [3]. Analytical methods provide reasonable prediction 
for relatively simple configurations of the phases. Complicated 
geometries, loading conditions and material properties often 
do not yield analytical solutions, due to complexity and number 
of equations. In this case, various numerical methods [4 - 7] are 
used for approximate solving, but they still make some simplifying 
assumptions about the microstructures of heterogeneous 
multiphase materials.

In homogenization process the original heterogeneous 
material is replaced by homogeneous material with the same 
mechanical properties. In other words, homogenization and 
averaging of properties and micro-fields of the material are 
considered as a homogeneous equivalent medium at the macro-
level, and the effective properties of the medium are determined 
on the basis of the analysis of the microstructure, micro-geometry 
and properties of the materials. 

There are various homogenization methods. Direct 
homogenization is based on the volume average of field variables, 
such as stress, strain and energy density. Effective properties can 
be calculated from effective properties definitions. The average 
and calculation of field variables can be performed numerically, 
for example, by finite element method (FEM) or boundary 
element method and geometry and microstructural properties 
can be generalized for real composite materials which do  not 
have periodic structure distribution of the fibers in the matrix [8]. 

Indirect homogenization is based on the Eshelby solution 
of self-deformation for one inclusion in an infinite matrix – the 
equivalent inclusion method [9]. An alternative approach to 
direct and indirect homogenization is the variational method 
which can determine the upper and lower limits of the elasticity 
modulus [10].

A  relatively new approach for homogenization of 
microstructures consists of mathematical homogenization based 
on a two-scale extension of the displacement field [11]. 

2.	 Methodology    

The composite under consideration is constituted by 
continuous and parallel cylindrical fibers with equal radius 
and centers periodically spaced in a  hexagonal and a  squared 
array, as it appears in Fig. 1.  We assumed an ideal cohesion 
between the fiber and the matrix. A procedure of homogenization 

NUMERICAL FINITE ELEMENT METHOD HOMOGENIZATION 
OF COMPOSITE MATERIALS REINFORCED WITH FIBERS
NUMERICAL FINITE ELEMENT METHOD HOMOGENIZATION 
OF COMPOSITE MATERIALS REINFORCED WITH FIBERS

Daniel Riecky - Milan Zmindak - Zoran Pelagic *

The paper presents the micromechanical modelling of fiber-reinforced composites in order to determine elastic properties of the homoge-
nized material. For this purpose implementation of homogenization theory was required and analyses were performed. The polymer matrix 
of three-dimensional representative volume element (RVE) of the composites is modelled by the finite element method (FEM). Software for 
homogenization of material properties uses direct homogenization method which is based on volume average of stresses in the RVE. Homoge-
nization of composite plate is performed by linking MATLAB and ANSYS software. Calculated elastic properties of the homogenized material 
are given for epoxy matrix reinforced with carbon, fiberglass and kevlar fiber material.

Keywords: Fiber-reinforced composites,  Representative volume element, Finite element  method. 

*	 Daniel Riecky, Milan Zmindak, Zoran Pelagic
 	 Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, Slovakia
	 E-mail: milan.zmindak@fstroj.uniza.sk

https://doi.org/10.26552/com.C.2014.3A.142-147



143C O M M U N I C A T I O N S    3 A / 2 0 1 4   ●

Fiber material properties	 Table 1

Fiber material

Carbon M40J
Fiberglass 
S2Glass

Kevlar K49

E
f  
[GPa] 377 85.5 135.5

F
1t
 [GPa] 4.41 4.6 3.53

ν 0.33 0.22 0.37

ρ
m
 [kg/m3] 1770 2490 1450

d
f 
[μm] 5 10 10

				  
Matrix material properties	 Table 2

Matrix 
material

E
m 

[GPa] F
1t 

[MPa] ν ρ
f
 [kg/m3] G

m 
[GPa]

Epoxy 3.45 70 0.3 85.5 1.33

where subscript “ f ” denotes fiber and  “ m” matrix, respectively and 

E   –  Young modulus			  ν    –  Poisson number

G   –  Shear modulus			  ρ    –  Density

F
1t  

–  Longitudinal tensile strength		 d
f
   –  fiber diameter

	

The RVE dimensions are calculated for the square fiber 
configuration - Fig. 1a, from the relations  
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and for a hexagonal fiber configuration the RVE dimensions are 
in Fig. 1b, from the relations
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where a
1
 is the x-direction, in this case the fiber direction, a

2
 is 

the y-direction, orthogonal to the fiber direction, a
3
 is z-direction, 

transverse vertical to the fiber direction and V
f
 is fiber volume 

fraction.
Analysis of microstructure directly yields a  transversely 

isotropic stiffness tensor 
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where the 1-axis is aligned with the fiber direction and the over-
bar indicates the average computed over the volume RVE. The 
components of the tensor C are determined by solving three 
elastic models of RVE with parameters (a

1
, a

2
,
 
a

3
), subjected to the 

boundary conditions on the following displacement components. 

of material properties of composites using the method of 
representative volume element RVE was used. For the analysis of 
material properties an own software in MATLAB language was 
programmed and a part of the solution was carried out in ANSYS 
software. The RVE consists of volume elements SOLID45 (Fig. 
2) and then it is loaded by unit strains in various directions. The 
effective lamina properties are obtained from the volume means 
of stress values obtained by loading of the RVE. 

 
     a)                                                 b)

Fig. 1  Representative volume elements, a) square configuration,  
b) hexagonal configuration

              a)	           b)
Fig.  2 The finite element mesh adopted in the computation,  

a) square configuration, b) hexagonal configuration

Homogenized lamina RVE consists of fibers and epoxy 
matrix. The fibers are from three material types: carbon, glass, 
polyaramide. Used carbon fibers have an industrial label T300 and 
M40J. The glass fiber label is EGlass and S2Glass. Polyaramide 
fibers have the label K49. Fiber material properties are listed in 
Table 1 and the matrix properties are listed in Table 2. 
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In order to evaluate the elastic matrix C of the composite, the 
RVE is subjected to an average strain fbr . The unit strain applied 
on the boundary results in a complex state of stress in the RVE.

Then the volume average of the strain in the RVE equals to 
the applied strain

V dV
1

ij ij ij
V

0f f f= =r # 	 (10)	
       	
 	                                     

Then volume average of stress in RVE equals to required 
components of the elastic matrix as

C V dV
1

ij i i

V

v v= =r # 	 (11)

The coefficients in C are found by setting a different problem 
for each column of C and the components. Details of the 
procedure for calculation of the coefficients of the matrix C are 
given in [14].

	

3.	 Results    

Homogenization of a composite plate is performed by linking 
MATLAB and ANSYS software. Homogenization of the material 
properties were done  for fiber volume fractions V

f
 from the 

interval <0.2, 0.6>. The entire process is automated requires just 
entering a type of fibers, their arrangement and the step increment 
volume fraction.  The finite element code ANSYS 11.0 is used 
to solve the problem described above.  The matrix and fibers are 
modeled by linear elastic isoparametric brick elements with eight 
nodes and six faces (i.e. the ANSYS SOLID elements). FE mesh 
is symmetric with respect to the coordinate planes. 

In Figs. 3 to 6 deformed shapes and contour plots of stresses 
for different strains applied to stretch the RVEs are described. 
The boundary conditions in the calculation of the sixth column 
of C are enforced by using coupling constraint equations (CE).  
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For the homogeneous composite material, the relationship 
between average stress and strain is 

Cv f=a ab br r 	 (7)

α, β = 1,...,6 is the contracted notation given in [12]. This implies 
that elements of the matrix C are determined by solution of 
six elastic RVE models in which boundary conditions (4-6) 
are applied for only one component of the strain 0fb . This 
component is different from zero for each of the six problems. 
Once the components of the transversely isotropic tensor C are 
known, the five elastic properties of the homogenized material 
can be computed by [13]:
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where E
1
 and  E

2
 are longitudinal and transversal Young’s moduli, 

ν
12 

and  ν
23

 are longitudinal and transversal Poisson’s ratios and G
12

 
is the longitudinal shear modulus. The shear modulus G

23
 in the 

transversal plane can be obtained using classical relation between 
Young modulus E and shear modulus G, so 

        
Fig. 3  Deformed shape and contour plot of stress 11v , ,1 01

0 0 0 0 0 0
2 3 4 5 6f f f c c c= = = = = =
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Fig. 6 Deformed shape and contour plot of stress 13x , 
,1 06
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Fig. 7 Effective elastic constants E
1 
and E

2
 vs. V

f

Fig. 4 Deformed shape and contour plot of stress 22v , 
,1 00 0

3
0

4
0

5
0

6
0

2 1f f f c c c= = = = = =  

          	

	
Fig. 5 Deformed shape and contour plot of stress 33v , 

,1 00
1
0 0

4
0

5
0

6
0

3 2f f f c c c= = = = = =
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The modelling procedure is explained briefly in this paper. If one 
wishes to perform a parametric study, repeating this process on 
an interactive session, using the CAE graphical user interface 
(GUI)  is very time consuming and prone to errors. Instead, it is 
possible to capture the ANSYS script generated by CAE during 
an interactive session and use it to automate the process. 
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In Figs. 7 to 9 courses of the homogenized elastic material 
properties for hexagonal array computed using equations (8) 
are described. Calculated elastic properties of the homogenized 
material for V

f 
= 0.6 are given in Table 3 where the indices “h” and 

“s” denote hexagonal array and square array, respectively.  

4.	 Conclusions

Accurate and efficient methods have been proposed within 
the framework of the displacement-based FEM for solving the 
unit cell homogenization (RVE) problem for periodic composites. 

Fig. 8 Effective elastic constants G
12 

and G
23

 vs. V
f

Fig. 9 Effective elastic constants v
12

 and v
23

 vs. V
f

Calculated elastic properties of the composite with fiber volume fraction V
f
 = 0.6  	 Table 3

V
f 
= 0.6

M40J S2Glass K49

h s h s h s

E
1 
[GPa] 227.58 227.58 52.683 52.687 82.683 82.685

E
2
 [GPa] 12.831 16.71 11.607 14.334 12.121 15.301

G
12 

[GPa] 5.15 5.53 4.67 4.94 4.844 5.155

G
23 

[GPa] 4.737 6.967 4.3314 5.905 4.481 6.288

v
12

0.320 0.321 0.246 0.245 0.347 0.348

v
23

0.354 0.199 0.340 0.214 0.352 0.217
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