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1.	 Introduction

In cars and other double-tracked wheeled vehicles, 
a  differential couples the drive shaft to half-shafts that connect 
to the front or rear driving wheels. The differential gearing allows 
the outer drive wheel to rotate faster than the inner drive wheel 
during a  turn [1] and [2]. This is necessary when the vehicle 
turns, making the wheel that is travelling around the outside of the 
turning curve roll farther and faster than the other one. Average 
of the rotational speed of the two driving wheels equals the input 
rotational speed of the drive shaft. An increase in the speed of one 
wheel is balanced by a decrease in the speed of the other.

2.	 Vehicle model concept

Special blocks that enable sequencing and creating of string 
structures are also called two-terminal blocks. They have one 
input i and one output o on each side of the block (Fig. 1).

Fig. 1 Two-terminal block (Source: authors)

The principle of the string-concept vehicle modelling can be 
used by the classic drivetrain vehicle model, which consists from 
two-terminal block models of the drivetrain subsystems and the 

three-terminal block model of the rear axle mechanical differential 
(Fig. 2).

The vehicle drivetrain model consists of blocks which are 
connected in alternating order of the blocks defining inertias 
(engine, gearbox, differential, vehicle body, wheels) and the blocks 
defining the torque or force law between connected components 
(clutch, torque converter, elastic shafts, tire) [3] and [4].

The blocks can be then divided into two groups:
•	 inertia blocks with the inner structure defining the inertia 

of the engine, gearbox, differential, wheels and the car body, 
which calculate the component speed,

•	 torque and force blocks, which calculate the torque of the 
clutch (alt. torque converter), torque on the shaft ends 
and forces between the tires and the track or the wheels 
respectively.

Fig. 2 Classic vehicle drivetrain model (Source: authors)

The string structure is completed with the:
•	 control parameter blocks (round shaped with the arrow 

towards the controlled block) , which represent the position 
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Fig. 4 Structure of the three-terminal differential block model  
(Source: authors)

The fundamental differential ratio is defined as

u z
z

0v
p

l

l

p
r! ~

~
~= = = ,	 (2)

where:	 z
l
 tooth number of the central wheel l,

	 z
p
 tooth number of the central wheel p.

The relations between the torques in the differential are 
descibed via the torque equilibrium equation

M M M 0p l r+ + = ,	 (3)

where:	 M
p
 torque on the central wheel p,

	 M
l
 torque on the central wheel l,

	 M
r
 torque on the carrier r.

The power equilibrium has to be applied in the same time. 
Then, if the efficiency losses are ignored, the power balance 
equation is defined as

M M M 0p p l l r r~ ~ ~+ + = ,	 (4)

which is modified by the stopped differential rotating cage – 
carrier r (ω

r
 = 0) into the form

M M 0p p l l~ ~+ = .	 (5)
If the differential is the vehicle one (z

p
 = z

l
, opposite speed 

of the wheels p and l by the stopped carrier r), the fundamental 
differential ratio has the value u

v
 = -1. The Willis formula (1) is 

then changing to the form

2p l r~ ~ ~+ = .	 (6)

The speeds of both differential output shafts can be also 
calculated with the help of the rotation superposition [8] and [9]. 
The final speed equations are superposed from the speeds of both 

of the gas, brake and clutch pedal and the shifted gear 
according the driver discrete event system (DES) model [5],

•	 environment resistance block, which is defined by the track 
and vehicle characteristics (grade resistance) [6] or the 
environment (aerodynamic drag).

3.	 Differential model structure

A  differential (Fig. 3) consists of one input, the drive 
(propeller) shaft, and two outputs – half shafts, which are 
connected to the drive wheels [7]. The rotation of the drive 
wheels are coupled by their connection to the track via the tires. 
Under normal conditions, with small tire slip, the ratio of the 
speeds of the two driving wheels is defined by the ratio of the radii 
of the paths around which the two wheels are rolling, which in 
turn is determined by the track-width of the vehicle (the distance 
between the driving wheels) and the radius of the turn.

Fig. 3 Structure of a common vehicle mechanical differential (Source: 
http://www.mrclutchnw.com/services/differential-rebuilding/)

4.	 Model equations

The model of the differential has to be a  three-terminal 
according to the vehicle drivetrain model structure described 
above (Fig. 4).

The kinematics of the three-shaft differential basic elements 
are defined according to the Willis formula as

u u1p l v r v~ ~ ~- = -^ h,	 (1)

where:	 ω
p
 speed of the central wheel p,

	 ω
l
 speed of the central wheel l,

	 ω
r
 speed of the carrier r,

	 u
v
 fundamental differential ratio.
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The torque ratio between the pinion and the crown wheel is 
defined with no losses by the equation

i M
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r2=- = ,	 (12)

where:  M
d2

	 reaction torque on the crown wheel.

The angular accelerations of the output shafts can be 
calculated by the following motion equations [8] and [9]:
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where: I
pr
	 inertia of both output shafts reduced to the central 

wheel p shaft,
          I

lr
	 inertia of both output shafts reduced to the central 

wheel l shaft.

The final angular acceleration equations of the all three 
differential shafts by the help of equations (8) through (13) can 
be defined either general as
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or particular for the vehicle differential (u
v
 = -1; I

p
 = I

l
) as
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5.	 Conclusion

Mathematical model of the mechanical differential is an 
important component of the complex vehicle drivetrain model. 
It can be built by different approaches according to the modelled 
system structure [11 and 12]. This article shows how to build 
a  three-terminal mechanical differential block model calculating 
the shaft speeds according the acting torques, which is suitable for 
string structure drivetrain mathematical models.

output shafts with the carrier connected to a  fixed unit and the 
relative speed of the central wheels towards the stopped carrier. 
The equation of the relative speeds is given by
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where:  ω
pr
	 relative speed of the central wheel p towards the 

stopped carrier r,
            ω

lr
	 relative speed of the central wheel l towards the 

stopped carrier r.

The equation above is the condition of the relation between 
the speed derivations (accelerations) in the form
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The acceleration component r~o  of the described fixed unit 
of both output shafts with the carrier rotating with the speed r~  
is applicable to derive from the motion equation [10]

I M M Mdr r r p l~ = + +o ,	 (9)

where:   I
dr
 	 inertia of the differential fixed unit reduced to the 

carrier r.

Reduced moment of inertia I
dr
 of the unit consisting of 

differential input shaft with the differential pinion, carrier with the 
differential crown wheel and both output half shafts is calculable 
via the mass and force reduction method comparing the reduced 
unit kinetic energy and the kinetic energy of the unit components 
as
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where:  I
d1

	 inertia of the pinion and the rotating cage (carrier) 
reduced to the differential input shaft,

           I
p, l

	 inertia of the output (half) shafts p and l,
            i

d
	 ratio between the differential pinion and the crown 

wheel,
            ω

d1
	 differential input shaft speed (pinion speed),

            ω
r
	 differential crown wheel speed (rotating cage/carrier 

speed).

The ratio between the pinion and the crown wheel is defined 
by the equation

id
r

dl

~
~

= .	 (11)
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