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APPLICATION OF FLOYD'S ALGORITHM ON TRANSPORT
NETWORK OF SOUTH BOHEMIAN REGION

The introductory part of the paper deals with the theory of searching for optimal routes in transport networks, including a description of

each type of optimization tasks. The aim of the article is demonstration of Floyd algorithm application to find the minimal paths from each

node to another in network graph - in our case the network represents traffic model of road network in the region of South Bohemia.
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1. Introduction

Finding the optimal routes in networks (transport network,
telecommunication network, etc.) is the most common task
of Graph Theory used in everyday life. These tasks are solved
within the models of real transport networks. An example of
a schematic model of the transport network may bea common
non-oriented, connected and edge-rated graph. We are searching
for optimal routes at this graph (model) because we need, for
example, to minimize the costs necessary for realization of
journeys. Minimizing the costs (such as the fuel consumption)
can be understood as a task of finding the shortest (minimal) path
between two specified nodes in the graph.

But it is not always about the minimizing of costs. Tasks of the
reliability and capacity belong to the issue of route optimization in
networks as well. These examples belong to the tasks of important
routes within the graph [1]:

e Task of the shortest (minimal) path;

- from one specific node of graph (origin) to another;

a) searching for minimal path from origin to final
destination;

b) searching for minimal path from origin to all other
nodes of graph;

- from each node to one another;

» task of the most reliable path;

e path with a maximum capacity;

¢ finding the maximum path in the graph (adjusted general
algorithm).
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In the following part a task of optimal route is generally
formulated and a practical demonstration of the application of
a simplified Floyd’s algorithm on the transport network of I and 11
class roads in South Bohemian region is conducted for searching
optimal routes in the network. Specifically, it is the application of
the algorithm in the task of finding the minimal path from each
of the network vertex to another [2].

2. Formulation of the problem of optimal route
in network

Let us have a transport network as graph G = (X, U, @(h))
wherein each edge # € U is rated with number ¢ (/), called the
edge length. Then the task of the optimal route in a network of n
nodes (vertexes) is to find the optimum route, namely [3]:
¢ from one node v, (i.e. start or origin vertex) to other node v,

(i.e. the destination or final vertex) in the network;
¢ from the initial node v, to each of the other nodes v, € Xin

the network; v, € v,
¢ from every node v, € X to each another final node v, in the

network; v, 7 v;
¢ between all pairs (v, vj), or between ordered pairs /v, v/ v, #+ V.S

ij=1..,n

When choosing the best option, some optimality criterion
always enters into the solution of the problem. For example, in
dealing with the problem of possible routes between two nodes we
can assess distance (length) of possible routes, the consumption
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of time needed for the relocation, the mutual availability of the
nodes and the costs associated with relocation.

However, we always come to the two extreme tasks, namely
[3 and 4]:

to minimum => task to find the minimal path;

to maximum => task to find the maximal path.

The most common practical example is the criterion of
optimizing the costs associated with relocation, and because our
demand is to minimize the distance after which the relocation
occurs. In application on the transport network of South
Bohemian Region we will discuss the task of finding minimal
paths between all nodes in the graph G = (X, U, @ (h)) [4].

2.1 Model of transport network in South Bohemian
Region

As already mentioned in the introductory part of the article,
simplified transport network is composed of I and II class roads
(Fig. 1). Based on the real map and real conditions the traffic
model was created (non-oriented graph G = (X, U @(h)))
showing simply the same transport network with the valuation
of individual edges with the distance [km], but for simplicity
intersections in rural areas are neglected - intersections of network
are merely nodes = cities with a population over 5,000. This
simplified model of the network is then shown in Fig. 2.

Fig. 1 The road network of South Bohemian Region with the nodes -

towns and cities with population over 5,000
(source: hitp://www.mapy.cz) [5]
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Fig. 2 A simplified model of the transport network
in the South Bohemian Region with values of edges (km)
(source: Authors)

2.2 Minimal paths from one node to another

The bulk of the tasks requires the calculation of distances
between any two network nodes, thus the task is to find the
minimal path between all pairs of nodes (v, v/_), more precisely
between ordered pairs /v, v/ in graph G = (X, U @(h)), where
v, #* v, and i, j=1, .., n. In the selected transport network the output
of the algorithm will be a square matrix of minimum distances D
of type n x n, where n = number of nodes (towns and cities with
more than 5,000 inhabitants) in the graph, in the case of the
South Bohemian Region n = 16. The whole graph is thus shown
as a square 16 x 16 matrix where the row and column headings
constitute individual nodes (cities) of the graph (Fig. 3) [6].

2.3 Floyd Algorithm

To demonstrate the practical use of the algorithm in practice,
Floyd algorithm determining the minimal path from each node
to another one was chosen. This algorithm is suitable for all
transport networks having the number of edges approaching
the complete graph. The algorithm is applicable to oriented
and non-oriented graphs. In the case of simplified transport
network of South Bohemia region it will be a non-oriented graph
G=X U, @(h)).

1) First, we prepare the initial square matrix of direct distance

Cioo = (CU):,.ZI of n x n type so that:
ci=@(h).if 3 U:p(h) = (vi,v)).i #j )
c;=0fori=j

c; = oo,if exists h € U:p(h) = (vi,v,),i # ]

foralli,j=1 .. n[3]
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Ea TA Bl | ST |Volync|Vimperk| Volary] CK |T.Sviny|irebon JH |Sobeslav]Tyn n. VIL|Vodnany] PT  |Netolice] CB
TA D q5 | 1E+12] 1E+12] 1E=12 | 1E+12 | 1E+12] 1E+12 |1E+12] 1E+12] 20 32 TE<12 |1E<12] 1E+12 | 1E+12
PI a5 i 22 |1E+12| 1E<12 | 1E+12 | 1E+12| 1E+12 |1E+12| 1E+12| 1E+12 28 22 [1E+12| 1E+12 [ 1E+12
ST 1E=12| 22 i 13 | 1E<12 | 1E+12 | 1E212] 1E+12 [1E+12| 1E+12| 1E+12 | 1E=12 26 |1E+12| 1E+12 | 1E+12
Volyne 1E=12 | 1E+12]| 13 0 18 | 1E+12 | 1E+12] 1E+12 [1E+12|1E+12| 1E+12 | 1E=12 26 25 | 1E+12 | 1E+12
Vimperk 1E+12 | 1E+12 | 1E+12] 18 0 27 |1E+12| 1E+12 [1E+12] 1E+12] 1E+12 | 1E+12 | 1E=12 | 23 | 1E+12 | 1E+12
Volary 1E=12 | 1E+12 [ 1E+12| 1E+12| 27 0 51 | 1E+12 [1E+12] 1E+12] 1E+12 | 1E+12 | 1E=12 | 19 | 1E+12 | 1E+12
€K 1E+12 | 1E+12 | 1E+12| 1E+12 | 1E+12 |51 0 33 |[1E+12|1E+12| 1E+12 | 1E+12 | 1E+12 | 39 | 38 26
Trhove Sviny | 1E=12 | 1E+12 [1E+12| 1E+12 | 1E+12 | 1E+12]| 33 0 24 |1E+12| 1E+12 | 1E+12 | 1E+12 |1E+12] 1E+12| 22
Treboi 1E+12 | 1E+12 | 1E+12| 1E+12 | 1E=12 | 1E+12 | 1E+12| 24 0 28 34 1E+12 | 1E=12 |1E+12| 1E+12| 27
JH 1E=12 | 1E+12 | 1E+12| 1E+12 | 1E-12 | 1E+12 | 1E+12] 1E+12 | 28 0 28 1E+12 | 1E12 |1E+12| 1E+12 | 1E+12
Sobgslav 30 | 1E+12|1E+12| 1E+12 | 1E12 | 1E+12 | 1E+12| 1E+12 | 34 | 28 0 27 1E<12 |1E+12] 1E+12 | 41
Tyn nad Vitavou| 32 28 |1E+12] 1E+12 | 1E=12 | 1E+12 | 1E+12| 1E+12 |1E+12|1E+12| 27 0 23 |1E+12| 1E+12| 33
Vodnany | 1E<12| 22 | 26 | 26 | 1E<12 | 1E+12 |1E+12| 1E+12 |1E+12] 1E+12] 1E+12 22 0 2 21 33
PT 1E<12 | 1E+12 | 1E+12| 25 23 19 | 39 | 1E+12 |1E+12|1E+12] 1E+12 | 1E+12 24 0 19 |1E+12
Netolice 1E=12 | 1E+12 | 1E+12| 1E+12 | 1E=12 | 1E+12| 38 | 1E+12 [1E+12| 1E+12| 1E+12 | 1E=12 21 19 0 26
cB 1E=12 | 1E+12 | 1E+12| 1E+12 | 1E<12 | 1E+12| 26 22 27 |1E+12| 41 33 33 |1E+12] 26 0

Fig. 3 Formation of the initial matrix C, of the graph direct distances (source: Authors)

The symbol p(h) represents the direct distance between
nodes v, and v, Thus, if there is an edge in the graph directly
connecting node v, with node v, then we record to the matrix of
direct distances the edge evaluation (D(h) (= distance) between
these nodes [7].

If the direct distance between nodes v, and v, does not exist,
we write to the matrix of direct distances the symbol oo (in our
case in Fig. 3, the symbol oo represents the large number 10'2).

2) The sequence of matrices Ck, where k = 1 ,.., n is being
gradually constructed. In this cycle, for k = 1, ..., n, we search
whether the way from the vertex v, to v, cannot be shortened
through the vertex v, (see the schematic representation in
Fig. 4) [8].

For all i, j # k we recalculate the elements in the matrix C,
according to the relation [9]:

®

P =min{c ", + V) where i j k=1, n. (2)

Thus for the matrix C, (see in Fig. 5), its elements are as

Vk

Vi Vj
Fig. 4 Schematic representation of shortening the way from the vertex v,
w0v, through the vertex v, (source: Authors)

3) If k = n, then the final matrix C” is the searched matrix of
minimal distances of the graph; thus, for all pairs of nodes / and
J applies ¢, = dl_/,, where dﬁ is the distance (= the distance of the
shortest path) between the nodes v, and v, forallij=1 .. n
The final matrix C = D is called distance matrix [10 and 11].
The final distance matrix D for transport network model in

follows.: South Bohemia is shown in Figure 6 including minimal distances

C, TA Pl ST |Volyne|Vimperk| Volary| CK |T. Sviny[Trebon| JH [SobeslavTyn n. Vit.|Vodnany| PT [Netoli CB |

TA 0 43 TEFTZ TE+T | TE#12 | TE-1Z | TE+12| TE+12 [ TE+12[ 1E+72 20 32 TE+T2 [TE#1Z] TE+12 | 1E+12

Pl 45 0 22 | 1E+12 | 1E+12 | 1E#12 [ 1E+12| 1E+12 [ 1E+12| 1E+12 CED 28 22 1E+12| 1E+12 | 1E+12

ST 1E+12 22 0 13 1E+12 [ 1E-12[1E+12] 1E+12 [1E+12[1E+12] 1E+12 1E+12 26 1E+12| 1E+12 [ 1E+12

Volyné 1E+12 | 1E+12| 13 0 18 1E+12 | 1E+12| 1E+12 [ 1E+12| 1E+12| 1E+12 1E+12 28 25 1E+12 | 1E+12

Vimperk 1E+12 | 1E+12|1E+12[ 18 0 27 | 1E+12]| 1E+12 | 1E+12| 1E+12| 1E+12 1E+12 1E+12 23 1E+12 | 1E+12

Volary 1E+12 | 1E+12 | 1E+12| 1E+12 27 0 51 1E+12 | 1E+12| 1E+12| 1E+12 1E+12 1E+12 19 1E+12 | 1E+12
CK 1E+12 | 1E+12 | 1E+12[ 1E+12 | 1E+12 51 0 33 1E+12| 1E+12| 1E+12 1E+12 1E+12 39 38 26
Trhové Sviny | 1E<12 [ 1E+12|[1E+12| 1E+12| 1E+12 [ 1E+12| 233 0 24 | 1E+12| 1E+12 1E+12 1E+12 [1E#12| 1E+12| 22
Trebon 1E+12 | 1E+12 | 1E+12[ 1E+12 | 1E+12 [ 1E+12 | 1E+12 24 0 28 34 1E+12 1E+12 [1E+12| 1E+12 27

JH 1E+12 | 1E+12 | 1E+12| 1E+12 | 1E+12 | 1E+12 | 1E+12| 1E+12 28 0 28 1E+12 1E+12 [1E#12| 1E+12 [ 1E+12
Sobeslav 20 € 65 DIEFIZ[1E+12[ TE-12 [ 1E-12[1E+12[ 1E+12 34 28 [1] 27 1E+12 [1E+12]| 1E+12 41
Tyn nad Vitavou] 22 28 [ME+12[1E+12[ 1E=12 [ 1E+12[ 1E+12] 1E+12 [1E+12[1E+12 27 0 22 1E+12| 1E+12 33
Vodnany 1E+12 22 26 26 1E+12 | 1E+12 | 1E+12| 1E+12 | 1E+12| 1E+12| 1E+12 22 0 24 21 33

PT 1E+12 | 1E+12 | 1E+12| 25 23 19 39 1E+12 [1E+12| 1E+12| 1E+12 1E+12 24 0 19 1E+12
Netolice 1E+12 | 1E+12 | 1E+12| 1E+12 | 1E+12 [ 1E+12 38 1E+12 [ 1E+12| 1E+12| 1E+12 1E+12 21 19 0 26
CB 1E+12 1E+12 1E+12| 1E+12 | 1E+12 | 1E+12| 26 2 27 | 1E+12 41 33 33 1E+12| 26 0

Fig. 5 Formation of the new matrix C, from C,(the elements ¢ which have been changed are marked in red) (source: Authors)
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Cig=D TA Pl ST [Volyne|Vimperk| Volary [ CK |T. Sviny|[Trebon| JH TSobesl Tyn n. VIt.[Vodnany| PT [Netolice] CB
TA 0 45 67 80 95 97 a7 78 54 48 20 a2 54 78 75 61
PI 45 0 22 35 53 65 g1 77 a2 a3 55 28 22 45 43 55
ST 67 22 0 13 3 57 77 81 86 103 75 43 26 33 47 59
Volyné 80 33 13 0 15 44 64 &1 36 103 73 45 26 25 44 59
Vimperk 98 53 3 18 0 27 62 30 a5 121 93 66 44 23 42 68
Volary 97 65 57 44 27 0 51 34 91 119 92 65 43 19 38 64
CK 87 a1 77 64 62 51 0 33 53 81 E7 59 59 39 38 26
Trhové Sviny 78 7 a1 a1 30 34 33 0 24 52 58 55 55 67 48 22
Trebon 54 a2 86 86 95 91 53 24 0 28 34 60 60 72 53 27
JH 48 a3 103 103 121 119 g1 52 28 0 28 55 77 100 81 55
Sobéslav 20 55 75 75 93 92 67 58 34 28 0 27 49 73 67 41
Tyn nad Vitavou 32 28 48 48 66 65 59 55 60 55 27 0 22 46 43 33
Vodiany 5. 22 26 26 44 43 59 55 60 77 49 22 0 24 21 33
PT 78 46 38 25 23 19 39 67 72 100 73 46 24 0 19 45
Netolice 75 43 47 44 42 38 38 48 53 81 67 43 21 19 0 26
CB 61 55 59 59 g8 64 26 22 27 55 41 a3 33 45 26 0

Fig. 6 The final distance matrix C,, = D (source: Authors)

from every major city to one another along existing I and II class
roads.

3. Conclusion

The main objective of this paper was to describe the issue of
searching for optimal paths in networks as one of the key areas
of graph theory. For illustration, one of the most common tasks
of graph theory was described - the task of searching for minimal

path, which was, by means of using Floyd algorithm, applied to
a particular transport network of the South Bohemian region
[12].

The task solution is represented by the abovementioned
distance matrix D indicating the minimum distances from each
node of the network to another one. This procedure is applicable
to other transport networks as well (road network in the Czech
Republic) and has a practical use, for example in logistics (route
planning, transport service of territorial units etc.) and other
sectors of transport (telecommunications etc.).
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