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IMPLEMENTATION OF MEMETIC ALGORITHMS
INTO STRUCTURAL OPTIMIZATION

The paper presents an implementation of the memetic algorithm for discrete structural optimization. This algorithm is a combination of

genetic algorithm and five local search methods. The proposed memetic algorithm is able to choose the right local search method based on

performance which is evaluated in real time during optimization.
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1. Introduction

The term “meme” was coined by evolutionary biologist
Richard Dawkins in his book The Selfish Gene where it is
described as an equivalent to gene in cultural evolution. Examples
of memes are tunes, ideas, catch-phrases, clothes fashions, ways
of making pots or of building arches. Just as genes propagate
themselves in the gene pool by leaping from body to body via
sperms or eggs, SO memes propagate themselves in the meme pool
by leaping from brain to brain via a process which, in the broad
sense, can be called imitation [1].

Memetic algorithms represent a group of optimization
methods which combine global optimization and local search
methods. The global search part is usually based on genetic
algorithm or particle swarm optimization. The global optimization
part ensures diversity, favors exploration and provides good
coverage of the optimization space, while the local search
methods favor exploitation and speed up the convergence to local
extremes [2]. The choice of local search methods is affected by
the problem which is being solved. The no free lunch theorem
says that the performance of different methods on different
problem classes is not equal [3] and so the choice of the right
local optimization method is often left on the user, see - Fig. 1.
Problems of engineering mechanics often require computationally
expensive evaluation of objective function [4 and 5], so it is
crucial to choose the right local search methods. A traditional
approach would be that the user selects the local search methods
based on his previous experience and observation of their
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performance on similar problems. This traditional approach
requires the user to have this experience and even then it does not
guarantee that the best performance is achieved. The memetic
algorithm which is proposed in this paper is using multiple local
search methods and the algorithm itself is capable of making the
decision which method should be used. This decision is based on

performance evaluation.

Problem class

Semi specialized method

Highly specialized method |

Universal method

Effectiveness of algorithm

Fig. 1 Effectiveness of algorithm vs. problem class

2. Description of the Memetic Algorithm

The global optimization part of memetic algorithm is based
on genetic algorithm. The genetic algorithm is using three genetic
operators: selection, crossover and mutation. Rank selection
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is taking into account both the value of objective function and
diversity to prevent premature convergence to local extreme.
Uniform crossover ensures that the new offspring inheres equal
portion of genes from both parents. The principle of uniform
crossover is depicted in Fig. 2. Non-uniform Cauchy mutation
performs better than other types of mutation because it has
potential to make longer jumps [6]. The Cauchy distribution
is depicted in Fig. 3. The high probability of mutation in the
beginning helps to improve diversity in population and is
approaching zero in the final stages. This probability of mutation
is guided by exponential cooling schedule known from simulated
annealing which can be seen in Fig. 4. In each generation the
best 10% of population is carried to the next generation without
changes. This elitist approach saves good solutions from mutation
and crossover which could be otherwise lost. However, they are
also used as parent chromosomes during selection and crossover.
The worst 40% of population is deleted prior to the selection.
The new population is assembled from the best 10% which were
further improved by local search methods, the offspring generated
by crossover and mutation and the rest is generated using “white
space search” (WSS) algorithm to complete the full size of
population.

Fig. 2 Uniform crossover
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Fig. 3 Cauchy distribution
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Fig. 4 Exponential cooling schedule

The memetic algorithm has five local search methods at its
disposal. These methods include: pattern search method, Nelder-
Mead simplex method, Dai-Yuan nonlinear conjugate gradient
method with line search, particle swarm optimization and fully
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stress design method. The sizes of step parameters of the local
search methods are guided by linear cooling schedule (see Fig.
5), which is used in simulated annealing. In each generation of
genetic algorithm, 10% of the population is improved by local
search methods. The memetic algorithm can choose the local
search methods based on their performance.

t

Fig. 5 Linear cooling schedule

In the first iteration all local search methods are tested
with equal probability, the performance of methods is then
evaluated based on the difference of objective function divided
by time spent by the method and averaged for each method. The
percentage of candidates improved by local search methods is
then divided according to their performance. If the percentage
for any method reaches zero it is kept at small non zero value so
it has chance to be tested and potentially return to normal use.
If the ratio of use of all local search methods reaches zero, the
process is restarted and all of them gain the same ratio of use as in
the beginning. By always using the best performing method the
overall performance is significantly improved. The scheme of the
algorithm is in the following Fig. 6.

Starting population

‘ Calculation of objective function }4—

’ Sort the population based on the value of objective function ‘

Delete the worst 40% of population

¥

Genetic operators
Rank selection
Uniform crossover
Non-uniform Cauchy mutation

v

‘ Memetic operators on the best 10% of population ‘

Improvement by local search

v

‘ Evaluate the performance of local search methods ‘

and update the percentage of their use

v

Assemble a new population from:
Improved members
Offspring generated by genetic operators
Randomly generated members using WSS (to complete the initial size)

YES + NO
‘ END ‘4—‘ ‘—

Control of the stopping conditions
Fig. 6 Scheme of the memetic algorithm
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3. Properties of Local Search Methods Used in the
Memetic Algorithm

The detailed description of the used local search methods
would not fit into the scope of this paper, instead only their main
properties will be discussed. The memetic algorithm uses five
optimization methods as local search methods: pattern search,
Nelder-Mead simplex method, Dai-Yuan nonlinear conjugate
gradient method, particle swarm optimization method and fully
stress design method. Pattern search method and Nelder-Mead
simplex method are deterministic comparative optimization
methods, thus they are derivative free and can operate on
functions that don’t have continuous first derivative (noisy
functions). However, they can perform inferior to gradient based
methods when used on smooth functions with continuous first
derivative. Dai-Yuan nonlinear conjugate gradient method is a fast
converging deterministic gradient based method, however as all
gradient based methods it can have problems with noisy functions
as the numerical calculation of gradient can become problematic.
Particle swarm optimization is considered as a stochastic global
search method, however its properties can be altered by tuning
its parameters (inertia, cognitive and social parameter) to favor
exploitation over exploration [7]. Fully stress design method is
an engineering approach to structural optimization and despite
the fact that its use is limited only to stress constrained problems
it is very effective. The fully stress design method can very
quickly solve the part of problem which requires minimization of
weight with respect to stress constraint, on the other hand, the
conventional optimization methods would require much more
time to find an equivalent solution. More detailed information on
the fully stress design method can be found in [8, 9 and 10]. Each
local search method is running only for a few iterations.

4. Numerical Test

The algorithm was tested on a truss structure subjected to
stress and displacement constraint. The goal is to minimize price
of used material, while satisfying the stress and displacement
constraints. Three materials with different price and yield strength
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were used. The used materials were structural steels S235, S275
and S355. The safety coefficient for stress was k = 3 so the stress
limits O; for each material were 78.33, 91.66 and 118.33 MPa
respectively. The prices p for ton of material were estimated
450, 500 and 600 euro. Density was same for all materials
P =17850kg m?. The displacement limit was 20 mm. The Young’s
modulus is the same for all three materials E = 210 000 MPa.
Objective function is calculated as follows

fx)=y3r pVip:. ¢))

If the stress constraint is violated, the objective function is
penalized as follows

flx)=flx) +f(x)((6m%m)>'

(2)
Similarly, if the displacement constraint is violated, the
objective function is penalized as follows

Ax) =flx)+ f(x)<(u"“*u77’“)>_

(3)

The structure was divided into 6 optimization groups.
The optimization variables were 6 cross-section areas and 10
geometrical parameters. The sizes of cross-section area were
divided into 361 discrete values from 500 to 2500 mm?. For
the purpose of keeping the number of optimization variables
as low as possible the design variables for cross-sections were
combinations of materials and cross-section areas so the total
number of available cross-sections was 1083. The geometrical
optimization variables were heights of the structure defining its
shape. The nodes between the top and bottom of structure were
always positioned in the middle of the total height.

The structure was loaded by its own mass and forces
of magnitude 15 kN. Boundary conditions and optimization
variables are depicted in the following Fig. 7 of the structure using
the shape after optimization.

The size of population was set to 1000, maximum number
of generations was 500 and the number of iterations of local
search in one generation was 2. The resulting axial stresses after
optimization are depicted in the following Fig. 8.
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Fig. 7 Boundary conditions (red - loading forces, green - deformation constraints) and optimization variables (¢ - cross-section, h - height)
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Fig. 8 Axial stress [MPa] after optimization

The history of local search methods use is in the next Fig. 9.
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Fig. 9 Use of local search methods vs. iteration step (red - PS, green - NM, blue - NCG, cyan - PSO, magenta - FSD)

The history of objective function can be seen in Fig. 10.
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Fig. 10 Objective function vs. iteration step

The value of objective function in optimum found by the
algorithm was 26.9 and mass of the structure was 1345.3 kg.

Furthermore, due to stochastic nature of the components
which are included in the memetic algorithms, a statistical
test was carried out to compare the performance of MA with
automated choice of local search method vs. MA with single local
search method. We tested it against all five LS methods which
have been used in the proposed algorithm.

The size of the population was set to 100, each local search
method was allowed to run 2 iteration steps in one generation of
GA. The algorithm stopped when it found solution with value of
objective function lower than 40. The performance is compared
based on the time spent by the algorithm. To provide statistical

significance we run each combination 500 times. The results
showing percentage of samples vs. computational time can be
seen on the following histograms (Figs. 11 - 16).
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Fig. 11 GA +PS
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Fig. 12 GA + NM
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Fig. 14 GA + PSO

In Fig. 9 you can see that the algorithm first selects FSD
method, then Nelder- Mead method and finally the pattern search
method. Nonlinear conjugate gradient method and particle
swarm optimization method were used only scarcely. Pattern
search and Nelder-Mead method are both deterministic and
gradient free. Comparison of combinations of GA and single local
search methods shows that the Nelder-Mead method is better
than simple pattern search, however the automatic choice of local
search methods chose pattern search over Nelder-Mead.

5. Conclusion

The best performing combinations were GA+PSO and
GA+NCG so they can be considered as the best choices for
solution of similar problems. The automatized choice of local
search method has not improved performance on this particular

References

0 200 400 600 800 1000 1200 1400 1600
time [s]

Fig. 15 GA + FSD

200 400 600 GO0 1000 1200 1400 1600
time [s]

Fig. 16 GA + [PS, NM, NCG, PSO, FSD]

test problem as we expected. Further research and testing on
multiple test problems is required to definitely confirm whether
the proposed idea of automatized choice of local search method
improves the performance or not. Its performance could be
affected by repeated use of deterministic local search methods on
the same solution which did not improve the solution but rather
wasted the computational time. The proposed method could be
improved by keeping the track of operations carried out on each
solution so the algorithm would not use the same deterministic
method repeatedly on the same solution and also by using meta-
optimization to adjust the parameters of local search methods.
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