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STATISTICAL AND FRACTAL ANALYSIS OF RANDOM HEIGHT

FUNCTION

Nanostructured semiconductor surfaces are commonly used for suppression of the light reflection. We prepared several kinds of surface
structures on silicon substrate and analyzed the properties of the random height function used for the description of observed surface morpho-
logy. Statistical and fractal methods used in this analysis provide useful information for the optimization of the surface forming procedure.
Multifractal analysis provides additional information about the surface morphology, not contained in the results of standard statistical methods.
Numerical procedures used in the multifractal analysis were tested by using theoretical random height function created from large sets of

Cantor numbers.
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1. Introduction

The properties of microstructure play an important role
in fabrication of electronic and photonic devices, especially in
solar cells [1]. In order to decrease the reflection losses and
increase the absorption probability by light trapping in the solar
cell structure random pyramidal textures are usually prepared at
the semiconductor surface [2 - 8]. Pyramidal texture is formed
by etching of the silicon surface and contains a large variety of
surface shapes depending on the technological treatment. For
characterization of the pyramidal surface morphology, the random
height function /4(x,y) describing the height of atom above the
reference plane at position (x,y) can be used. The characteristics
of the random height function are visually apparent but not
sufficiently described by conventional measures like mean value
or standard deviation. The values of the random height function
h(x,y) can be experimentally obtained by the electron microscopy
or by the scanning probe methods with atomic resolution [9, 10].
Experimental values of /(x,y) posses a scale invariant structure.
The particular kind of scale invariant structure in the experimental
data s(x) is defined by the power exponent H in an equation for
scaling of observed data s(cx) = /s (x). The complex shape of the
random height function can be described by the fractal methods
in this case [11 - 14]. The variations in scale invariant structure
can be often observed in the experimental surface images. This

indicates a multifractal structure of scanned surface image that is
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defined by a multifractal spectrum of power law exponents rather
than a single power law exponent for monofractal.

In this paper we describe results of statistical and multifractal
analysis of theoretical surface generated by using Cantor numbers
[15] as well as the random height function of real semiconductor
structures, observed with atomic resolution.

2. Multifractal analysis

For the description of the random height function properties
the multifractal singularity spectrum f{a) and generalized fractal
dimension Dq can be used. The box-counting method is often
used for the multifractal analysis studied structure. The observed
surface is divided into square areas with the size of side €. In
a selected area the probability measure is defined by
P(g)~ €& (1)
where ¢, is singularity exponent. If N(O() is the number of
surface areas in which P has singularity ¢ in an interval
a; € (a,a + do), then multifractal singularity spectrum f(a)
is defined by equation

N(a)~ "™ (2)
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Function f(a) can be interpreted as the fractal dimension of
surface areas with singularity o. This definition is connected with
the multifractal measure described by the multifractal singularity
spectrum.

For the characterization of multifractal properties of
the studied surface generalized fractal dimension Dq can be
alternatively used. The ¢4 moment of the P measure is defined
by the equation

. log> P(e)

quq—llqiflo1

loge )

In case when Dq does not depend on ¢ then the studied surface
h(x,y) is monofractal. By using the Legendre transformation we
obtain relation of f{a) and Dq in form

flo)=ag—(q—1)D, (4)
For ¢ = 0 we obtain Hausdorff fractal dimension

— Jim2eN

_ . logN
Do =—lim a0 log1/€

40 log €

Q)
By using L'Hospital’s rule we obtain for g = 1

log>_ P!
Di=limo—glim—5.e— =
> PllogP, > PilogP, (6)
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Dimension D, corresponds to the entropy or information
dimension. Lower value of D, indicate higher disorder of observed
random height function A(x,y).

For ¢ =2 we obtain correlation dimension

2
D, = lim 022 (e)

e~0 logé€ 0

suitable for an identification of the surface homogeneity. The
higher degree of the surface homogeneity, the higher value of D,
is observed [12, 13, 16, 17].

3. Results and discussion

For analysis of multifractal properties of the /(x,y) function,
we generated theoretical surface by using Cantor numbers. We
determined values of the /(x,y) function by random selections
from large Cantor sets C(n). Cantor sets were constructed by
dividing of unit interval into three subintervals (C(3)), five
(C(5)), seven (C(7)) and nine subintervals (C(9)). By the random
selection (with uniform distribution) from these Cantor sets the
different /(x,y) functions representing surface areas of various

size were constructed. Random surface generated by this way is
shown in Fig. 1.

b)
Fig. 1 Random height function generated from Cantor
set numbers C(3); a) 2D plot, b) 3D plot

For computation of the P in (Equation 1) we used the box-
counting method

hi

8
Shy (8)
where h,-,- is the mean value of the A(ij) function in the box

box(ij). By using this probability we computed generalized
fractal dimension Dq (Equation 3) and multifractal spectrum f{a)

szz

(Equation 4). The results of developed numerical procedures
show expected behaviour for multifractal structures of
theoretical Cantor test surfaces and were used for analysis of real
semiconductor surfaces. In Fig. 2 two distributions of pyramidal
textures formed on flat silicon surface are shown. In pyramidal
structure dl a quasi homogeneous distribution of pyramidal
shapes was formed whereas in structure d2 dominant fraction of
small pyramids with random occurrence of very high pyramids
was created.
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b)
Fig. 2 Pyramidal structures prepared on Si surface:
a) distribution d1, b) distribution d2

Statistical characteristics of the random height function 4(i,j)
values obtained by the atomic force microscopy experiment for
these pyramidal structures are shown in Table 1.

Statistical characteristics of the experimental random

height function Table 1
Distribution d1 a2
Max nm 2946.51  2206.76
Peek-to-peek S nm 2946.51 2206.76
10-point height S, nm 1483.12  1069.98
Average roughness S nm 1417.75 664.146
Mean square roughness Sq nm 461.827 146.431
Coefficient of variation Sq /S, 0.326 0.22
Skewness S, 0.154 2.467
Kurtosis S, -0.389 11.761

The values of these statistical characteristics can be used
in study of the surface roughness properties. Coefficient of
variation is a relative measure of variability between structures
with different averages. For distribution d1 this indicates higher
surface roughness. Higher value of the skewness for distribution
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d2 is influenced by higher inhomogeneity of the pyramidal
shapes in this distribution (dominant fraction of small pyramids).
Negative value of kurtosis for distribution d1 shows low influence
of different pyramidal shapes onto the statistical properties of
d1 distribution and high value of kurtosis for distribution d2
indicates the presence of abnormally high pyramidal shapes at
observed surface.

Statistical analysis provides useful information about the
random height function properties. Supplementary information
can be obtained by using multifractal methods. In Fig. 3 results
of multifractal analysis of four pyramidally textured surfaces are
shown.
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Fig. 3 Results of multifractal analysis of pyramidal texture with
maximal heights of pyramids 1.5, 1.3, 1.6, and 2.2 um:
a) multifractal singularity spectrum f(a),
b) generalized fractal dimension D(q)

We analyzed distributions d1 and d2 where maximal height
of the pyramid equals 3um and we studied also distribution
d1 with maximal height of pyramidal shapes 6 um and 1.5 pm.
Generalized fractal dimension Dq curves show decreasing trend
significant for multifractal surface morphology. In plot of the Dq
curves we observe important difference between characteristics
for d1 and d2 distribution. Surface structure d2 has significantly
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lower Dq values in comparison to homogeneous distribution d1
for all ¢ values. Value of dimension D, connected with traditional
fractal dimension is very similar for all pyramidal distributions
(with different heights of pyramids). On the other side significant
differences can be seen in comparison of distributions d1 and d2.
Lower value of dimension D, for distribution d2 indicates higher
disorder in this pyramidal distribution (higher randomness) in
comparison to d1 distribution. Maximal value of the correlation
dimension D, indicates the highest homogeneity of the observed
surface.

Multifractal characteristics are therefore very sensitive
to small changes in the surface height function and in the
distribution of pyramidal shapes. Different shapes of the Dq
curves enable us to distinguish reliably between the properties of
different distributions d1 and d2 as well as between small changes
in the same distribution of pyramidal shapes (for example, for
distributions type d1 with different heights of pyramids). The
obtained results can be therefore used for the optimization of
technological steps of surface texture forming procedure.

Multifractal singularity spectrum f{a) has concave shape
typical for multifractal morphology. The maximal height of
the f(a) spectrum is given by the D, value and the width of
Ala) spectrum corresponds to the variability of shapes of the
morphological objects. Symmetry of the fla) curve is different
for distribution d2, which indicates higher non-uniformity of
distribution d2 in comparison to distribution d1.

In Fig. 4 multifractal spectrum f{a) curves for thin
nanocrystalline layers formed by etching of silicon surface in the
HF acid in contact with the Pt electrode are shown.

The analyzed structures were etched for 10, 20, and 30
seconds and values of the random height function were obtained
by the scanning electron microscope with magnification 2000.
From the shape of fla) curves we can see, that the surface
morphology develops primarily in the first stages of etching
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procedure (during the first 20 seconds). With the prolongation of
etching time the development of surface morphology stabilizes.
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Fig. 4 Multifractal spectrum f(a) curves of the nanocrystalline Si layers

4. Conclusions

Statistical and multifractal analysis provides information
about the shape of morphological objects development as well as
about the intensity of modification of treated surface morphology.
Multifractal analysis is a suitable tool for study of the random
height function properties, providing additional information
about the surface morphology, not contained in the results of
standard statistical methods.
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