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1. 	 Introduction

In projects related to multiparticle production in hadronic or 
nuclear collisions it is often demanded to generate a large number 
of particles with momenta distributed according to relativistic 
Bose-Einstein or Fermi-Dirac distribution. Here one has to take 
into account the total energy (i.e. including the mass) when 
evaluating the exponent of the distributions
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where m is the mass of the particles, p p= , μ is the chemical 
potential and T is temperature. Parameter q assumes the value 
of 1 for fermions and −1 for bosons. For the generation of 
invariant momentum distributions one also needs this distribution 
multiplied with the energy
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As the distribution is spherically symmetric, the angles are 
trivially integrated and we are left with the distributions for the 
size of the momentum vector. In order to make it suitable for 
a general procedure, it is expressed with the help of dimensionless 
variable
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Thus we get
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or for the other distribution
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In these functions we have suppressed the constant pre-
factors which also contain dimensions.

For the Monte Carlo generation we shall proceed with the 
dimensionless distributions without the dimensionfull pre-factors.

A  similar algorithm for the generation of relativistic 
Maxwellian distribution has been reported in [1, 2]. In our work 
we properly account for quantum statistics and allow for non-
zero chemical potential, which can influence the momentum 
distribution. We describe the procedure for the distribution (1.5) 
with the energy factor. The procedure for the distribution (1.4) 
can easily be derived along the same steps as we shall proceed.
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x
l
  The point left from the mode in which the linear 

comparison function touches the distribution. It is found from the 
condition for the derivative of the distribution
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The slope of the linear comparison function is then
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x
−
  The point in which the linear part of the comparison 

function and its constant part meet. It can be determined as
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The knowledge of x
−
 also allows to express
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x
u
  The point in which the exponential part of the comparison 

function touches the distribution.
Above the mode the distribution is log-concave. Therefore, 

x
u
 can be chosen anywhere above x

m
. However, we checked 

that the acceptance rate is optimised with x
u
 chosen so that the 

distribution there drops to 1/e of its maximum value. We get the 
value by solving the equation for the logarithms of the distribution
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Again, this equation must be solved numerically.
Once x

u
 is determined, we can determine the slope parameter 

of the exponential comparison function. It is given by the 
logarithm of the distribution. Thus
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x
+
  Finally, this is the point in which the constant part of 

the comparison function and its exponential part join. It is 
determined from a simple equation
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2. 	The algorithm

We demonstrate in the Appendix that the distribution 
(1.5) is log-concave for large enough x, i.e. its logarithm is 
a concave function. For such a distribution there always exists an 
exponential that is everywhere above the demanded distribution. 
One can generate random deviates according to the exponential 
and use the rejection method [2].

In order to achieve the smallest possible rejection rate we use 
piecewise analytic comparison function, as indicated in Fig. 1. 
The three pieces are determined so that 
• 	 for x ≤ x

−
 the comparison function is linear;

• 	 for x
−
 < x ≤ x

+
 the comparison function is constant and equal 

to the value of the distribution at the mode;
• 	 for x > x

+
 the comparison function is exponential.

Fig. 1 Dimensionless Bose-Einstein distribution with energy pre-factor 
according to Eq. (1.5); the shape corresponds  to A=2/3 and M=3/4 

but we have suppressed the values on the axes in order to demonstrate 
the comparison function and locate the important points for the 

determination of the comparison function 

The joint points x
−
 and x

+
 are chosen so that the comparison 

function is always continuous.
For the determination of the comparison function we thus 

need to determine the five points indicated on the horizontal axis.
x

m
  The mode of S(x). This is easily obtained by differentiating 

and we get
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Unfortunately this expression cannot be solved analytically 
and numerical methods must be invoked.

Subsequently, the value of S(x) at the mode can be determined
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For the rejection step we need the probabilities to accept the 
generated value of x.

They are given as P(x)=S(x)/S′(x). In the three intervals they 
read
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Now we have collected all expressions needed to build up 
the algorithm. Because of the need to numerically solve a  few 
equations the procedure may be lengthy if one needs to generate 
just one random value. However, if many values must be generated 
for the same temperature, chemical potential and particle mass, 
then all parameters can be calculated first and then used 
repeatedly. Thus the first part of the algorithm is the calculation 
of the parameters:

Once we have x
+
, we also know the exponential part of the 

comparison function which reads
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Thus we can formulate the comparison function
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In order to use this comparison function as probability 
density (after normalisation) for random variate generation we 
need the values

y S x dx S x
2
1x

m
0

= =- -

-

l^ h# 	 (2.12a)

y S x dx S x x
2
1x

m
0

= = -+ + -

+

l^ ah k# 	 (2.12b)

y S x dx S x x
2
1 1

m
0 m

= = - +3

3

+ -l^ ch m# 	 (2.12c)

The inverse of the integral of S′(x) is
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Fig. 2  Histograms of 107 random deviates fitted by function S(x) with only the absolute normalisation as a fit parameter; values of A and M are 
fixed in the fit function in order to be the same as in the Monte Carlo generation; the values are: (a) A=2/3, M=0, bosons (e.g. pions with μ=0 at 
temperature k

B
T=207 MeV); (b) A=2, M=0.993, bosons (e.g. pions with μ=137 MeV/c2 at temperature k

B
T=69 MeV, close to condensation); (c)  

A=4.536, M=0, fermions (e.g. protons with μ=0 at temperature k
B
T =(3/2)m

π
c2 =207 MeV); (d) A=13.609, M=0.9989, fermions (e.g. protons with 

μ=938 MeV at temperature k
B
T=m

π
c2/2=69 MeV)



69V O L U M E  1 9 	 C O M M U N I C A T I O N S    3 / 2 0 1 7   ●

A Log-concave distribution

In this Appendix we demonstrate that the distribution S(x) 
according to Eq. (1.5) is indeed log-concave on the interval above 
the mode. Therefore, an exponential function which touches S(x) 
from above in one point will never be smaller than S(x).

The calculation is straightforward. We take the second 
derivative of lnS(x). For fermions (q=1), this leads to

ln

dx

d S x

x x x
x

x

A
s x A x s x s x

1
1 2

1
1
2

1
1 1f f f

2

2

2 2 2

2

2

2 2

=-
+

+ +
+
+

+
- + -+

^

^ ^ ^ ^ ^

h

hh h hh
'

1
	 (A.1)

where

exp
s x

A x M1 1

1
f

2
=

+ - +
^ ^h h6 @ .

Note that s
f 
(x) ≤ 1 for any x. Therefore, (1- s
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(x)) ≥ 0 and 

all terms in the bracket in Equation (A.1) are non-negative. In 
summary, we see that for fermions
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and thus the distribution is log-concave everywhere.
The case of bosons is slightly more involved. Again, we take 

the second derivative
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Note the change of the sign in (1+s
b
(x)) and in front of the 

last term. Due to this, for bosons the second derivative may 
become positive in some cases. We want to demonstrate that such 
pathological intervals are always below the mode of S(x).

For x→∞ the terms s
b
(x) go to 0 exponentially (we chose the 

letter s for “small”), and one can inspect that

lim
ln

dx

d S x
0

x 2

2

=
"3

^ h

and the value of the limit is being approached from below. Thus 
the second derivative is either negative everywhere or there 
is a  point x = x

c
 where it crosses the horizontal axis and stays 

negative for x > x
c
. It is enough to show that x

c  
< x

m
.

1. 	 Determine x
m
 by solving Equation (2.1).

2. 	 Calculate S
m
 from Equation (2.2).

3. 	 Determine x
l
 by solving Equation (2.3).

4. 	 Calculate x
−
 from Equation (2.5).

5. 	 Determine x
u
 by solving Equation (2.7).

6. 	 Calculate λ from Equation (2.8).
7. 	 Calculate x

+
 from Equation. (2.9).

8. 	 For later convenience calculate also the values of y
−
, y

+
, and y

∞
 

from Equations (2.12).
This is the common part of the preparation. Then, in order to 

generate a value, follow these steps:
9. 	 Generate uniform random deviate y from the interval [0,y

∞
].

10. 	Calculate x=x(y) from Equation (2.13).
11. 	Accept the value of x with the probability given by Equations 

(2.14). If the value is not accepted, return to the step 9.

3. 	 Illustration of results

We have tested this algorithm in a wide range of parameters 
A  and M. Particle masses were chosen both smaller than 
temperature so that large momenta are available and also much 
larger than temperature so that the momenta are practically non-
relativistic. Chemical potentials up to the value of particle mass 
for bosons, i.e. the point of condensation, were tested, as well 
(Fig. 2). In all cases the acceptance rate was around 90 %. This 
shows that the comparison function is very well adapted to the 
present problem.

4. 	Conclusions

The presented algorithm has been successfully implemented 
in an upgrade of the Monte Carlo event generator DRAGON 
[3], which serves for the generation of hadrons produced in high 
energy nuclear collisions. It is, however, general and can serve 
in any other application where relativistic momenta must be 
generated from quantum-statistical distributions.
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It turns out that the second derivative becomes positive only 
if the particles are light with A ≤ 3 and M is close to 1, which is 
quite an extreme case. (Recall that for bosons M must be smaller 
than 1 and M = 1 corresponds to the condensation point where 
the distribution does not longer apply.) In such a case, for small 
values of x one obtains s

b 
 >> 1 and the last term in Equation (A.3) 

prevails. We have scanned the whole relevant parameter region of 
A and M and checked that always x

c
 < x

m
 (Fig. 3). In all other cases 

the function S(x) is log-concave everywhere.
We conclude that it is safe to use the exponential comparison 

function in the interval (x
m
,∞).

Fig. 3 The difference in positions x
m
 - x

c
 as function of A and M. Values 

are not plotted if the secondderivative d2 lnS(x)/dx2 for bosons stays 
negative everywhere; One sees that always x

c 
< x

m
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