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GENERATION OF RANDOM DEVIATES FOR RELATIVISTIC
QUANTUM-STATISTICAL DISTRIBUTIONS

We provide an algorithm for generation of momenta (or energies) of relativistic particles according to the relativistic Bose-Einstein or

Fermi-Dirac distributions. The algorithm uses rejection method with effectively selected comparison function so that the acceptance rate of the

generated values is always better than 0.9. It might find its use in Monte-Carlo generators of particles from reactions in high-energy physics.
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1. Introduction

In projects related to multiparticle production in hadronic or
nuclear collisions it is often demanded to generate a large number
of particles with momenta distributed according to relativistic
Bose-Einstein or Fermi-Dirac distribution. Here one has to take
into account the total energy (i.e. including the mass) when
evaluating the exponent of the distributions
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where m is the mass of the particles, p = ‘ E , U is the chemical
potential and T is temperature. Parameter q assumes the value
of 1 for fermions and -1 for bosons. For the generation of
invariant momentum distributions one also needs this distribution

multiplied with the energy
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As the distribution is spherically symmetric, the angles are
trivially integrated and we are left with the distributions for the
size of the momentum vector. In order to make it suitable for
a general procedure, it is expressed with the help of dimensionless

variable
x=L (13)
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Thus we get
Ax)=x[exp(AVT+x* = M) +q]" (1.4)
or for the other distribution
S(x)=V1+xx*[exp(AV1I+x —=M)+q]" (1.5)
where
A= M=E (16)

In these functions we have suppressed the constant pre-
factors which also contain dimensions.

For the Monte Carlo generation we shall proceed with the
dimensionless distributions without the dimensionfull pre-factors.

A similar algorithm for the generation of relativistic
Maxwellian distribution has been reported in [1, 2]. In our work
we properly account for quantum statistics and allow for non-
zero chemical potential, which can influence the momentum
distribution. We describe the procedure for the distribution (1.5)
with the energy factor. The procedure for the distribution (1.4)
can easily be derived along the same steps as we shall proceed.
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2. The algorithm

We demonstrate in the Appendix that the distribution
(1.5) is log-concave for large enough x, i.e. its logarithm is
a concave function. For such a distribution there always exists an
exponential that is everywhere above the demanded distribution.
One can generate random deviates according to the exponential
and use the rejection method [2].

In order to achieve the smallest possible rejection rate we use
piecewise analytic comparison function, as indicated in Fig. 1.
The three pieces are determined so that
e for x < x the comparison function is linear;

» for x <x <x, the comparison function is constant and equal
to the value of the distribution at the mode;
» for x > x_the comparison function is exponential.

X X Xm o X4 Xy

Fig. 1 Dimensionless Bose-Einstein distribution with energy pre-factor
according to Eq. (1.5); the shape corresponds to A=2/3 and M=3/4
but we have suppressed the values on the axes in order to demonstrate
the comparison function and locate the important points for the
determination of the comparison function

The joint points x_and x, are chosen so that the comparison
function is always continuous.

For the determination of the comparison function we thus
need to determine the five points indicated on the horizontal axis.
x, The mode of S(x). This is easily obtained by differentiating

and we get
2 2
2+ 3 — Axn 1+ %y -0 Q1)
1+ gexp(—A(Y1+x;, —M))

Unfortunately this expression cannot be solved analytically
and numerical methods must be invoked.
Subsequently, the value of S(x) at the mode can be determined

S, =8(x) =1+ [AWVT+x2 — M) +q]” (2.2)

COMMVINICIONS

x, The point left from the mode in which the linear

comparison function touches the distribution. It is found from the
condition for the derivative of the distribution

ast) | _st)

which leads to
Axi v 1+ 7
1+qgexp(—AW1+x7

The slope of the linear comparison function is then

S(-xl) x v 1 +x7
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1+ 2x3— =0 (2.3)
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x_ The point in which the linear part of the comparison
function and its constant part meet. It can be determined as

S
x.=——2—|explA(W1+x —M))+ 2.5
The knowledge of x_also allows to express
_ Su
K=" (2.6)

x, The point in which the exponential part of the comparison
function touches the distribution.

Above the mode the distribution is log-concave. Therefore,
X, can be chosen anywhere above X . However, we checked
that the acceptance rate is optimised with x chosen so that the
distribution there drops to 1/e of its maximum value. We get the
value by solving the equation for the logarithms of the distribution

InS(x.)=1InS,— 1,

which leads to

1= InS,+ % In(1+x)+ 2Inx,

2.7)
—ln[exp(A(v 1+xi —M))—i—q] =0

Again, this equation must be solved numerically.

Once x is determined, we can determine the slope parameter
of the exponential comparison function. It is given by the
logarithm of the distribution. Thus

1 dlnS( )| __ x
. V1+xl
l exp(A(V1+x2 —M)) 2 (2.8)
exp(A J14+x — M))-l—q Xu

x, Finally, this is the point in which the constant part of
the comparison function and its exponential part join. It is
determined from a simple equation

Xe = Xu— 1 (2.9)
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Once we have x_, we also know the exponential part of the
comparison function which reads

S'(x)=S,e M) (2.10)
Thus we can formulate the comparison function
%x x < x-
S'(x)=1S. x <x<x. 2.11)
Spe T x>

In order to use this comparison function as probability
density (after normalisation) for random variate generation we
need the values

For the rejection step we need the probabilities to accept the
generated value of x.

They are given as P(x)=S(x)/S"(x). In the three intervals they
read

)= x-xv 1+
Salexp(A(V1+x = M))+q]

P(x XS x- (2.14a)

)= V1 +x
Salexp(A(V1+x = M))+q]

P(x tx. <x<x, (214b)

_ xXl+x exp(A(x—x.))
Sulexp(A(V1 +x* = M))+4]

P(x xe < x (2.14¢)
Now we have collected all expressions needed to build up

the algorithm. Because of the need to numerically solve a few

y = / "s '(x)dx = %Smx, (2.12a) | equations the procedure may be lengthy if one needs to generate
0
just one random value. However, if many values must be generated
V= / U '(x)dx = S,,,<x+ — %xf) (2.12b) | for the same temperature, chemical potential and particle mass,
0
then all parameters can be calculated first and then used
Voo = f N S’(x)dx =Su <x+ - %x, + %) (2.12¢c) | repeatedly. Thus the first part of the algorithm is the calculation
0
of the parameters:
The inverse of the integral of §'(x) is
2x- .
4/% y<y- gives x < x_
x(y)= %x7+SL y.<y<y, gives x- <x=<x_ (2.13)
x+—%ln 1 +<x+—%x,)l— éty] Doy <y<y. gives x> x
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Fig. 2 Histograms of 107 random deviates fitted by function S(x) with only the absolute normalisation as a fit parameter; values of A and M are

fixed in the fit function in order to be the same as in the Monte Carlo generation; the values are: (a) A=2/3, M=0, bosons (e.g. pions with u=0 at
temperature k T=207 MeV); (b) A=2, M=0.993, bosons (e.g. pions with u=137 Me V/c? at temperature k ,1=69 MeV, close to condensation); (c)
A=4.536, M=0, fermions (e.g. protons with u=0 at temperature kT =( 3/2)mnc-’ =207 MeV); (d) A=13.609, M=0.9989, fermions (e.g. protons with
u=938 MeV at temperature k T=m c’/2=69 MeV)
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Determine x by solving Equation (2.1).
Calculate S from Equation (2.2).
Determine x, by solving Equation (2.3).
Calculate x_from Equation (2.5).
Determine x by solving Equation (2.7).
Calculate 4 from Equation (2.8).
Calculate x, from Equation. (2.9).

oI = N N S N

For later convenience calculate also the values of y , v, and y_
from Equations (2.12).

This is the common part of the preparation. Then, in order to
generate a value, follow these steps:

9. Generate uniform random deviate y from the interval [0,y_].
10. Calculate x=x(y) from Equation (2.13).

11. Accept the value of x with the probability given by Equations
(2.14). If the value is not accepted, return to the step 9.

3. Illustration of results

We have tested this algorithm in a wide range of parameters
A and M. Particle masses were chosen both smaller than
temperature so that large momenta are available and also much
larger than temperature so that the momenta are practically non-
relativistic. Chemical potentials up to the value of particle mass
for bosons, i.e. the point of condensation, were tested, as well
(Fig. 2). In all cases the acceptance rate was around 90 %. This
shows that the comparison function is very well adapted to the
present problem.

4. Conclusions

The presented algorithm has been successfully implemented
in an upgrade of the Monte Carlo event generator DRAGON
[3], which serves for the generation of hadrons produced in high
energy nuclear collisions. It is, however, general and can serve
in any other application where relativistic momenta must be
generated from quantum-statistical distributions.
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A Log-concave distribution

In this Appendix we demonstrate that the distribution S(x)
according to Eq. (1.5) is indeed log-concave on the interval above
the mode. Therefore, an exponential function which touches S(x)
from above in one point will never be smaller than S(x).

The calculation is straightforward. We take the second
derivative of InS(x). For fermions (g=1), this leads to

dInS(x) 1 [2 2x?

P 1+lex+1+1+

o (A1)
i (s () + A% ()1 =5 x))}
where

1
eXp[A(\/l +x>—M)

si(x)= .
/() I

Note that sf(x) < 1 for any x. Therefore, (1- 5, (x)) >0 and
all terms in the bracket in Equation (A.l) are non-negative. In
summary, we see that for fermions

(A.2)
and thus the distribution is log-concave everywhere.

The case of bosons is slightly more involved. Again, we take
the second derivative

dzlnS(x)_ 1 2 252
e P PR R wwes A3
+L(l +5,(x)) + A%xs, (x)(1 + sh(x))}

J1+x°

where

1
explAWT+x*—M)]-1"

si(x) =

Note the change of the sign in (1+s,(x)) and in front of the
last term. Due to this, for bosons the second derivative may
become positive in some cases. We want to demonstrate that such
pathological intervals are always below the mode of S(x).

For x—oo the terms s,(x) go to 0 exponentially (we chose the
letter s for “small”), and one can inspect that

. d*InS(x)
lim————=
e dx

and the value of the limit is being approached from below. Thus
the second derivative is either negative everywhere or there
is a point x = x_where it crosses the horizontal axis and stays
negative for x > x . It is enough to show that x <x .
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Fig. 3 The difference in positions x, - x_ as function of A and M. Values
are not plotted if the secondderivative &’ InS(x)/dx’ for bosons stays
negative everywhere; One sees that always x <x
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