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APPLICATION OF MEMETIC ALGORITHMS IN MULTI-CRITERIA

STRUCTURAL OPTIMIZATION

The goal of this paper is to present new innovative algorithms for discrete structural optimization of problems involving multi-criteria

objective function, which contains stress, displacement and frequency constraints. The algorithm is tested on a shell finite element structure,

whose optimization variables are geometrical parameters and shell thicknesses. Performance of memetic algorithm will be compared with

genetic algorithm.
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1. Introduction

Problems solved by engineering practice often incorporate
multiple constraints which have to be taken into account [1 - 5].
Problems involving multiple criteria can be often divided into
multiple sub-problems, which have to be calculated separately.
Multi-criteria objective function has to take into account all sub-
problems to properly evaluate quality of a solution [6]. Each sub-
problem affects the character of the objective function and so it
can be hard to choose a single optimization method, which would
be equally effective for all sub-problems. Modern optimization
methods like Memetic Algorithms (MA) can be used to overcome
these difficulties. Memetic algorithms are optimization methods
which combine global search capabilities of global optimization
methods like genetic algorithms or particle swarm optimization
and fast converging local search methods like conjugate gradient
method or simplex method [7].

2. Multi-criteria objective function

The problem solved in this paper is constrained by stress
constraint, displacement constraint, modal constraint and
buckling constraint. Objective function is penalized when one
of the constraints is violated. The stress constraint requires that
the maximal stress is lower than stress limit O ;. Displacement
constraint requires that the maximal displacement is lower than
displacement limit ;. Modal constraint requires that natural

frequencies are outside of forbidden ranges, whose lower and
upper boundaries are calculated from excitation frequencies by
subtracting and adding 10% of excitation frequencies. Buckling
constraint requires that Buckling Load Factor (BLF) is higher
than buckling load factor limit BLF/ .

The objective function is initialized as mass of the frame:

f(x) = mass (D

If the stress constraint is violated, the objective function is
penalized as follows:

O nax — GL)) (2)
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If the displacement constraint is violated, the objective
function is penalized as follows:

(Mmax - ML))
L

1) =7+ 10- ). (1= o

Lower and upper limit is calculated for each excitation
frequency. Number of natural frequencies which fall into forbidden
ranges is used to penalize the objective function as follows:

Ax) =£(x) f(x)- violaton (4)

If the buckling constraint is violated, the objective function is
penalized as follows:

BLF, )

Ax)=fx)+10-f(x)- (‘577 )
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3. Description of the proposed memetic algorithm

The memetic algorithm used in this paper was based on
a genetic algorithm with rank selection, uniform crossover and
non-uniform Cauchy mutation [8]. Probability of crossover was
calculated based on diversity and the value of objective function.
Probability of mutation decreased exponentially with spent
computational time and iteration steps, starting at p_ = 0.3. The
best 10% of GA population was copied to the next generation
without change, to ensure that the best solutions were not lost.
The worst 30% of GA population was deleted. The remaining 70%
of solutions are used to generate new solutions using crossover
and mutation operators. 10% of the remaining solutions were
improved by local search. Additional solutions were randomly
generated by White Space Search algorithm (WSS) [9] to
complete the original size of GA population. Solutions which
were improved by local search (LS) were chosen with probability
proportional to their diversity and value of objective function.
Local search methods were allowed to improve all optimization
variables, however each local search method could run only for 5
iteration steps. Local search methods were chosen automatically
with probability proportional to their performance, which was
evaluated in real time. The algorithm was using four local search
methods: Pattern Search (PS), Nelder-Mead method (NM), Dai-
Yuan version of Nonlinear Conjugate Gradient Method (NCG)
with line search [10] and Particle Swarm Optimization (PSO)
with inertia parameters tuned for local search [11 - 12]. The search
radius of PS, size of simplex for NM, maximal reach of line search
for NCG and initial velocity of PSO were linearly decreasing with
GA iteration steps [13]. The features of the algorithm were set to
promote exploration of optimization space in the beginning and
gradually transform to intensive exploitation in the final stage of
optimization. The scheme of the algorithm is depicted in Fig. 1.

‘ Initial population H Calculation of objective function }4—

Sort the population based on the value of objective function and diversity
Save the best 10% of population, delete the worst 30% of population

L]

Genetic operators
Rank selection, Uniform crossover, Non-uniform Cauchy mutation

¥

Memetic operators on chosen solutions from GA population
*+ Improvement by local search

L]

Assemble a new population from:
Unmodfied best 10%, improved members, offspring generated by genetic operators,
randomly generated members using WSS (to complete the initial size)

VES * NO

END | Control of the stopping condtions

Fig. 1 Scheme of memetic algorithm
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4. Numerical testing

The proposed algorithm was tested on a frame structure
modeled by thin shell finite elements. The steel frame was
holding an electric motor and transmission [14]. The original
design of structure was made from normalized steel profiles
as can be seen in Fig. 2. Weight of the original frame was
approximately 2733.5 kg (calculated from CAD model). The new
design was based on welded sheet metal, which is more suitable
for optimization and allows greater weight savings.

Fig. 2 Original design of frame with electric motor and transmission

The frame was loaded by its own mass, mass of the
electromotor, mass of transmission and output moment of 200
kNm. The four pillars were fixed to the ground by constraining
all displacement and rotational degrees of freedom. The output
frequency of electromotor was 21.16 Hz and the output frequency
of transmission was 0.388 Hz. The electromotor and transmission
were modeled by mass point connected to a base plate by linear
beam elements. The base plate was modeled by 3D linear
tetrahedron elements and bonded contact was used to connect
the base plate to the frame. The frame itself was modeled by
linear triangular thin shell elements. Linear elastic material model
was used for 3D model of base plate and shell elements of the
frame. Young’s modulus of elasticity E = 210000 MPa, Poisson’s
number p = 0.3, density p = 7850 kg/m?®. Boundary conditions and
optimization variables can be seen in Figs. 3, 4 and 5.
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Fig. 3 Thickness optimization variables (tt,) and boundary conditions

Pio

Fig. 4 Geometric optimization variable P,

Fig. 5 Geometric optimization variables P, - P,

The problem had 16 optimization variables - 9 thickness
variables and 7 geometric variables. Shell thicknesses were
divided into 26 discrete values from 5 to 30 mm. Geometrical
parameters were also divided into discrete values.

The stress limit was set to 0,=120 MPa, displacement limit
was u = Smm, buckling load factor limit BLFL = 6. Forbidden
frequency ranges were set to £10% of excitation frequencies of
0.388 Hz and 21.16 Hz resulting in forbidden ranges R1 =<0.3495,
0.4272> Hz and R, = <19.05, 23.2833> Hz.

All FEM simulations were calculated using commercial FEM
software ADINA in parallel using custom developed system
in Matlab with use of Matlab Parallel Toolbox. Computational
hardware consisted of two high performance server machines
with total of 128 CPU cores and 512 GB RAM. Available license
of Matlab Parallel Toolbox allowed to run totally 24 FEM
simulations in parallel.

Initial numerical testing was performed using 100 solutions in
GA population and maximum computational time was set to 24
hours. The results of initial tests can be seen in following Table 1
and Figs. 6 - 12.

Best value of objective function and number

of objective function evaluations MA vs. GA Table 1
Method Best f(x) Number of f(x) evaluations
MA 1411.2129 4275
GA 1468.378 5731
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» Maximum effective stress after optimization was 120.6
MPa, which was 0.6 MPa above the stress limit. Maximum
displacement magnitude was 3.052mm, which was lower than
the displacement limit. The first load factor was 25.93, which was
Fig. 9 Initial MA run - History of optimization variables above the minimal buckling load factor. All natural frequencies
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(chosen indexes from vectors of discrete design variables) were outside of the forbidden ranges. All constraints were satisfied
except the stress constraint, which was violated only by negligible
value. Results can be seen in following Figs. 13 - 15 and Tables
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Fig. 10 Initial GA run - History of objective function vs. iteration step
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Fig. 14 Displacement magnitude

Fig. 15 First buckling mode

Further numerical testing was performed five times for GA
and five times for MA to provide statistical data as the tested
algorithms used random number generators. The size of GA
population was set to 30. Maximum computational time was set

to 8 hours.
Comparison of results for memetic and genetic algorithm  Table 3
MA GA
Run f(x) f(x) averaged f(x) f(x) averaged
1 1467.28 1573.52
2 1448.15 1592.47
3 1555.42 1562.46 1534.35 1598.29
4 1630.11 1812.25
5 1711.32 1478.86

6. Conclusion

Optimization of the frame and improvements of design
allowed to decrease weight of the frame from the original
2733.5kg to 1406.9kg. The total weight difference is 1326.6 kg
which is roughly 48% of the original weight. All constraints
were satisfied except the stress constraint, which was violated
only by 0.5%. Maximum effective stress after optimization was
120.6 MPa, which was 0.6 MPa above the stress limit. Maximum
displacement magnitude was 3.052 mm, which was lower than the
displacement limit of 5 mm. The first load factor was 25.93, which
was far above the minimal buckling load factor of 6. All natural
frequencies were outside of the forbidden ranges.

Numerical testing showed that the proposed memetic
algorithm performs slightly better than classical genetic algorithm.
The stress constraint seemed to play major role in penalization
of the objective function as it was the most frequent cause of
penalization of objective function and the optimized design
reached the stress limit. Performance of memetic algorithm
could be probably further improved by adding Fully Stress
Design method (FSD) to the local search methods, which is

Natural frequencies for 25 first modes after optimization using memetic algorithm Table 2
N:;de fll:::::l;lacly Nlllt())de fll'\eJ::::rnacly I\/lllzde fll'\eJ::::rnacly Nlll(())de fi\iz:::cly l\/lll(())de fi:::::cly
) [Hz] ) [Hz] ) [Hz] ) [Hz] ) [Hz]
1 0.47 6 4.20 1 13.09 16 17.51 21 26.58
2 1.28 7 5.20 12 13.24 17 18.38 22 26.78
3 1.96 8 9.10 13 13.54 18 18.67 23 27.12
4 2.93 9 10.52 14 14.99 19 23.38 24 31.24
5 3.29 10 11.42 15 17.28 20 24.94 25 31.69
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a specialized optimization method for solving problems involving | Acknowledgement

stress constraint [15 - 16].
The ability of memetic algorithms to be relatively easily This work has been supported by the Slovak Research and

tailored for specific problem makes them an interesting tool for | Development Agency under the contract No. APVV-14-0096.

a modern designer and allows to provide superior performance

when compared to classical global optimization methods like

genetic algorithms.
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