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1.	 Introduction 

In this paper, we consider a  signal statistical treatment 
problem in the framework of a nonparametric regression model 
in continuous time, i.e. 

,dy S t dt d t n0t t # #p= +^ h 	 (1)

where S (.) is an unknown 1-periodic signal, t t n0p # #
^ h  is an 

unobserved noise and ​n​ is the duration of observation. The 
problem is to estimate the function ​S​ on the observations 
yt t n0# #
^ h . Note that if t t n0p # #

^ h  is a Brownian motion, then we 
obtain the well-known “signal + white noise” model which is very 
popular in statistical radio-physics (see, for example, [1-3] and 
etc.). In this paper, we assume that in addition to the intrinsic 
noise in the radio-electronic system, approximated usually by the 
Gaussian white or color noise, the useful signal ​S​ is distorted by 
the impulse flow described by the Levy process, i.e. we assume 
that the noise process t t n0p # #

^ h  is defined as

w zt t t1 2p t t= +   and  z x*t tn n= - u^ h 	 (2)

where ρ1
 and ρ

2
 are some unknown constants, wt t 0$^ h  is a 

standard Brownian motion, ds dxn^ h  is a jump measure with  

deterministic compensator ,ds dx ds dx $n P P=u ^ ^ ^h h h  is a 
Levy measure, i.e. some positive measure on 0R R* = " , , such 
that

x 12P =^ h   and  x6 31P^ h 	 (3)

Here we use the notation x y dym m

R*
P P=^ ^h h# . Note 

that the Levy measure R*P^ h  could be equal to ​+ ∞​. We use * for 
the stochastic integrals with respect to random measures (see [4], 
Chs. 2 and 3), i.e.

,x y ds dyt

t

0 R

) n n n n- -=
)

u u^ ^ ^h h h## 	 (4)

In the sequel we will denote by ​Q​ the distribution of the 
process t t n0p # #

^ h  and by Q*n  we denote all these distributions for 
which the parameters 1 $t ​​ς​ 

*
​​​ and 1

2
2
2 #t t+ ​​ς*​ 

 
​​​ where ​​ς​ 

*
​​​ and ​​ς​ 

 
​​*​ 

are some fixed positive bounds. The cause of the appearance of a 
pulse stream in the radio-electronic systems can be, for example, 
either external unintended (atmospheric) or intentional impulse 
noise and the errors in the demodulation and the channel 
decoding for the binary information symbols. Note that, for the 
first time the impulse noises for detection signal problems have 
been introduced on the basis of compound Poisson processes was 
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considerably improve the non-asymptotic estimation accuracy. 
Such idea was proposed, for the first time, in [9]. Our goal is to 
develop these methods for non-Gaussian regression models in 
continuous time and to obtain the sharp oracle inequalities. It 
should be noted that to apply the improved estimation methods to 
the non-Gaussian regression models in continuous time one needs 
to modify the well-known James-Stein procedure introduced in 
[10] in the way proposed in [11, 12]. So, by using these estimators 
we construct the improved model selection procedure and we 
show that the constructed estimation procedure is optimal in 
the sense of the sharp non-asymptotic oracle inequalities for the 
robust risks which are defined in the Equation (5).

2. 	 Improved estimation

Let j j 1z $
^ h  be an orthonormal basis in ​​L​ 2​​​[0, 1]​.​ We extend 

these functions by the periodic way on R , i.e. t t 1j jz z= +^ ^h h  
for any t R! . For estimating the unknown function ​S​ in the 
Equation (1) we consider it’s Fourier expansion (see, for example, 
[13])

S t tj j

j 1

i z=
3

=

^ ^h h/  and ,S S t t dtj j j

0

1

i z z= =^ ^ ^h h h# 	 (7)

The corresponding Fourier coefficients can be estimated as

n t dy1
,j n

n

t

0

i z=t ^ h# 	 (8)

We define a class of weighted least squares estimates for ​S​(t)​​ as 

S j ,

j

n

j n j

1

m i z=m
=

t t^ h/ 	 (9)

where the weights Rn!m  belong to some finite set ​Λ​ from  
[0, 1]n.

Now, for the first ​d​ Fourier coefficients in Equations (7) we 

use the improved estimation method proposed for parametric 

models in [12]. To this end we set ,n j n j d1i i= # #
u t^ h . In the sequel 

we will use the norm x xd j

j

d
2 2

1

=
=

/  for any vector x x j j d1= # #
^ h  

from Rn . Now we define the shrinkage estimators as

g j1,
*

,j n j ni i= - t^ ^ hh 	 (10)

where ,c 1 1g j
n d

n
j d A1

i
= # #u

^ h " ,  is the indicator of the set A and ​​

c​ n​​​ is some known parameter such that c n
d

n .  as n " 3 . Now 

we introduce a class of shrinkage weighted least squares estimates 

for ​S​ as

S j*
,
*

j

n

j n j

1

m i z=m
=

^ h/ 	 (11)

by Kassam in [2]. However, the compound Poisson process can 
describe only the large impulses influence of fixed single frequency. 
There should be taking into account that in telecommunication 
systems, impulses are without limitations on frequencies. So, one 
needs to extend the framework of the observation model by 
making use of the Levy processes as in Equations (2). In this 
paper, we consider the estimation problem in the adaptive setting, 
i.e. when the regularity of ​S​ is unknown. Since the distribution ​Q​ 
of the noise process t t n0p # #

^ h  is unknown we use the robust 
estimation approach developed for nonparametric problems in 
[5]. We define the robust risk as

, ,supS S S SR R*
n

Q

Q n

Q*n

=
!

t t^ ^h h 	 (5)

where snt  is an estimation of the unknown signal S, i.e. some 
function of , ,y Rt t n Q0 $ $# #

^ ^h h  is the usual quadratic risk defined 
as

, ES S S SR* ,n Q S n
2

|= -t t^ h  and S S t dt2 2

0

1

= ^ h# 	 (6)

Here E
Q,S

 stands for the expectation with respect to the 
distribution P

Q,S
 of the process in the Equation (1) with a fixed 

distribution Q of the noise t t n0p # #
^ h  and a given function S.

In this paper, we consider minimax optimization criteria 
which aim to minimize the robust risk which is defined in 
the Equation (5) (see, for example, in [6]). To do this we use 
the model selection methods. The interest to such statistical 
procedures is explained by the fact that they provide adaptive 
solutions for a nonparametric estimation through oracle 
inequalities which give a non-asymptotic upper bound for a 
quadratic risk including a minimal risk over chosen family of 
estimators. It should be noted that the model selection methods 
for parametric models were proposed, for the first time, by Akaike 
[7]. Then, these methods had been developed by Barron, Birge 
and Massart [8] and Fourdrinier and Pergamenshchikov [9] 
for the nonparametric estimation and oracle inequalities for the 
quadratic risks. Unfortunately, the oracle inequalities obtained 
in these papers cannot provide the efficient estimation in the 
adaptive setting, since the upper bounds in these inequalities 
have some fixed coefficients in the main terms which are more 
than one. In order to obtain the efficiency property for estimation 
procedures, one has to obtain the sharp oracle inequalities, i.e. 
in which the factor at the principal term on the right-hand side 
of the inequality is close to unity. For this reason, one needs to 
use the general semimartingale approach for the robust adaptive 
efficient estimation of the nonparametric signals in continuous 
time proposed by Konev and Pergamenshchikov [5]. The goal of 
this paper is to develop a new sharp model selection method for 
estimating the unknown signal ​S​ using the improved estimation 
approach. Usually, the model selection procedures are based on 
the least square estimators. However, in this paper, we propose 
to use the improved least square estimators which enable us to 
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Here we denoted by Tr j j 1$^ h  the trigonometric basis in  
​​L​ ₂​​​[0, 1]​.​ For this change in the empirical squared error, one has to 
pay some penalty. Thus, one comes to the cost function of the 
form

J j j P2,
*

,n

j

n

j n

j

n

j n n
2

1

2

1

m m i m i d m= - +
= =

u t^ ^ ^ ^ ^h h h h h/ / 	 (17)
 

where ​δ​ is some positive constant, Pn mt ^ h  is the penalty term 
defined as

P nn
n n

2

m
v m

=t t^ h 	 (18)

Substituting the weight coefficients, minimizing the cost 
function

agrmin J*
nm m= !m K ^ h 	 (19)

 
in the Equation (11) leads to the improved model selection 
procedure

S S* *
*= m 	 (20)

It will be noted that *m  exists because ​Λ​ is a finite set. If the 
minimizing sequence in the Equation (19) *m  is not unique, one 
can take any minimizer. In the case, when the value of Qv  is 
known, one can take n Qv v=t  and P nn Q n

2 1m v m= -^ h .
Theorem 2. For any ​n  ≥  2​ and ​0  <  δ  <  1 / 3​, the robust risks 

defined in the Equation (5) of estimate in the Equation (20) for 
continuously differentiable function ​S​ satisfies the oracle inequality

, ,minS S S S
n
B

1 3
1 3R R* * * *

*
n

* #
d
d

d-
+ +

!
m

m
m

K
^ ^h h 	 (21)

 
where the rest term is such that B n 0*

n "f-  as n " 3  for any ​
ε  >  0​.

The inequality (21) means that the procedure in the Equation 
(20) is optimal in the oracle inequalities sense. This property 
enables to provide asymptotic efficiency in the adaptive setting, 
i.e. when information about the signal regularity is unknown.

4. 	Monte Carlo simulations

In this section we report the results of a Monte Carlo 

experiment to assess the performance of the proposed model 

selection procedure in the Equation (20). In the Equation (1) we 

choose 1-periodic function S which, for ​0  ≤  t  ≤  1​, is defined as 

S t t 2
1= -^ h , if t4

1
4
3# #  and S t 4

1=^ h  elsewhere. We 

simulate the Equation (1) with the noise process defined as

. .w z0 5 0 5t t tp = + 	 (22)

We denote the difference of quadratic risks of the estimates in 
Equation (11) and Equation (9) as : ,S S SR *

Q QD = -m^ ^h h  
,S SRQ- m
t^ h . Now for this deviation we obtain the following 

result.
Theorem 1. Assume that for any vector ​λ  ∈  Λ​ there exists 

some fixed integer ​d  =  d​(λ)​​ such that their first ​d​ components equal 
to one, i.e. ​λ​(j)​  =  1​ for ​1  ≤  j  ≤  d​ for any ​λ  ∈  Λ​. Then for any ​
n  ≥  1​ and r>0

csupsup S
rQ S

Q n
2

Qn

1D -
! #

^ h 	 (12)

The inequality (12) means that non-asymptotically, i.e. for 
any ​n  ≥  1​ the estimate in the Equation (11) outperforms 
in mean square accuracy the estimate in the Equation (9). 
Moreover, as we will see below, ​n ​c​ n​​  →  ∞   as d  →  ∞​. This means 
that improvement is considerable may be better than for the 
parametric regression [11].

3. 	Model selection

This Section gives the construction of a model selection 
procedure for estimating a function ​S​ in the Equation (1) on the 
basis of improved weighted least square estimates and states the 
sharp oracle inequality for the robust risk of proposed procedure.

The model selection procedure for the unknown function ​S​ in 
the Equation (1) will be constructed on the basis of a family of 
estimates S* !m m K^ h .

The performance of any estimate S*m  will be measured by the 
empirical squared error

Err S S*
n

2m = -m^ h 	 (13)

In order to obtain a good estimate, we have to write a rule to 
choose a weight vector ​λ  ∈  Λ​ in the Equation (6). It is obvious, 
that the best way is to minimize the empirical squared error with 
respect to ​λ​. Making use the estimate definition in the Equation 
(6) and the Fourier transformation of ​S​ implies

Err j j2,
*

,
*

n

j

n

j n

j

n

j n j j

j

n
2

1

2

1

2

1

m m i m i i i= - +
= = =

^ ^ ^ ^h h h h/ / / 	 (14)

Since the Fourier coefficients j j 1i $
^ h  are unknown, the 

weight coefficients j j 1m $
^ h  cannot be found by minimizing this 

quantity. To circumvent this difficulty one needs to replace the 
terms ,

*
j n ji i  by their estimators ,j niu . We set

n, ,
*

,j n j n j n
ni i i v= -u t t

	 (15)
 

where nvt  is the estimate for the noise variance of E ,Q Q j n
2v p= =    

1
2

2
2t t= + which we choose in the following 

form
t ,n

j n

n

j n
2

1

v =
= +

t t
6 @
/   and  Trt n t dy1

,j n j

n

t

0

=t ^ h# 	 (16)
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since the accuracy improvement is proportional to the parameter 
dimension. We remember that for the nonparametric estimation 
this dimension tends to infinity, but in the parametric case it is 
always fixed. Therefore, the gain in the non-asymptotic quadratic 
accuracy from the application of the improved estimation methods 
is much more significant in statistical treatment problems of 
nonparametric signals. Moreover, as shown by the results of 
numerical simulation, the improved estimate for non-asymptotic 
accuracy exceeds the usual least squares estimators approximately 
in 1.5-2 times for the chosen experimental model.
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where ,z Y Nt j t
j

N

1

t=
=
/  is a Poisson process with the intensity 

λ=1 and Yj j 1$^ h  is i.i.d. Gaussian (0,1). We use the model 

selection procedure defined in the Equation (20) with the weights 

proposed in [5]: , /ln lnk n n100 1* f= + =  and /m 1 2f= 6 @. 
We used the cost function with lnn3 2d = + -^ h . We define the 

empirical risk as , ES S p S t S tR 1
n j j

j

p

1

2

= -
=

u t u^ ^ ^ ^h h hh/  and 

E S S N S S1
n n

l

l

N
2 2

1

$ $ $ $- = -
=

t u u^ ^ ^ ^ ^ ^h hh h hh/  with the frequency 

of observations p=100001 and numbers of replications N=10000. 

Table 1 give the values for the sample risks for different 
numbers of observation period n.

5. 	Conclusion 

In conclusion, we would like to emphasize that in this paper 
we developed new model selection procedures based on the 
improved versions of the least square estimators. It turns out 
that the improvement effect in the nonparametric estimation 
is more important than for the parameter estimation problems 
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