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FOR THE ADAPTIVE NONPARAMETRIC SIGNAL

ESTIMATION PROBLEM

In this paper, we consider the robust adaptive non parametric estimation problem for the periodic function observed with the Levy noises

in continuous time. An adaptive model selection procedure, based on the improved weighted least square estimates, is proposed. Sharp oracle

inequalities for the robust risks have been obtained.
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1. Introduction

In this paper, we consider a signal statistical treatment
problem in the framework of a nonparametric regression model
in continuous time, i.e.

dy,=S(t)dt+dé, 0<t<n (1)

where S (-) is an unknown l-periodic signal, (&,),.,., is an
unobserved noise and n is the duration of observation. The
problem is to estimate the function S on the observations
(¥:)y<1<, - Note that if (£,),.,, is a Brownian motion, then we
obtain the well-known “signal + white noise” model which is very
popular in statistical radio-physics (see, for example, [1-3] and
etc.). In this paper, we assume that in addition to the intrinsic
noise in the radio-electronic system, approximated usually by the
Gaussian white or color noise, the useful signal S is distorted by
the impulse flow described by the Levy process, i.e. we assume

that the noise process (f,) is defined as

0<t=n

E=pw+p.z and z=x"(u— i), (2)

where p, and p, are some unknown constants, (W), is a
standard Brownian motion, ,u(ds dx) is a jump measure with
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deterministic compensator Z(ds dx)=dsI(dx),TI(-) is a
Levy measure, i.e. some positive measure on R. = R\{0}, such
that

M(x*)=1 and II(x*) < o 3)

Here we use the notation II(|x[")= f |y["TI(dy). Note
that the Levy measure II1(R.) could be equaf'to +00, We use * for
the stochastic integrals with respect to random measures (see [4],
Chs. 2 and 3), i.e.

we(p—),= [ [ y(p—@)ds.dy) )

In the sequel we will denote by Q the distribution of the
process (£.),.,., and by Q; we denote all these distributions for
which the parameters p, >¢ and pi+ p3 <¢" where ¢ and ¢’
are some fixed positive bounds. The cause of the appearance of a
pulse stream in the radio-electronic systems can be, for example,
either external unintended (atmospheric) or intentional impulse
noise and the errors in the demodulation and the channel
decoding for the binary information symbols. Note that, for the
first time the impulse noises for detection signal problems have
been introduced on the basis of compound Poisson processes was
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by Kassam in [2]. However, the compound Poisson process can
describe only the large impulses influence of fixed single frequency.
There should be taking into account that in telecommunication
systems, impulses are without limitations on frequencies. So, one
needs to extend the framework of the observation model by
making use of the Levy processes as in Equations (2). In this
paper, we consider the estimation problem in the adaptive setting,
i.e. when the regularity of S is unknown. Since the distribution Q
of the noise process (&)

0=<t=n

is unknown we use the robust
estimation approach developed for nonparametric problems in
[5]. We define the robust risk as

R (8,,5) = supRy(8.,S) 5
o,

where §, is an estimation of the unknown signal S, i.e. some

function of (y,),.,.,, Ro(-, ") is the usual quadratic risk defined

as

R (3.5) - =Eoll 8, =S| and S = [§$()ar  (6)

Here EQ'S stands for the expectation with respect to the
distribution PQ,s of the process in the Equation (1) with a fixed
distribution Q of the noise (f,)

In this paper, we consider minimax optimization criteria

<., and a given function S.

which aim to minimize the robust risk which is defined in
the Equation (5) (see, for example, in [6]). To do this we use
the model selection methods. The interest to such statistical
procedures is explained by the fact that they provide adaptive
solutions for a nonparametric estimation through oracle
inequalities which give a non-asymptotic upper bound for a
quadratic risk including a minimal risk over chosen family of
estimators. It should be noted that the model selection methods
for parametric models were proposed, for the first time, by Akaike
[7]. Then, these methods had been developed by Barron, Birge
and Massart [8] and Fourdrinier and Pergamenshchikov [9]
for the nonparametric estimation and oracle inequalities for the
quadratic risks. Unfortunately, the oracle inequalities obtained
in these papers cannot provide the efficient estimation in the
adaptive setting, since the upper bounds in these inequalities
have some fixed coefficients in the main terms which are more
than one. In order to obtain the efficiency property for estimation
procedures, one has to obtain the sharp oracle inequalities, i.e.
in which the factor at the principal term on the right-hand side
of the inequality is close to unity. For this reason, one needs to
use the general semimartingale approach for the robust adaptive
efficient estimation of the nonparametric signals in continuous
time proposed by Konev and Pergamenshchikov [5]. The goal of
this paper is to develop a new sharp model selection method for
estimating the unknown signal S using the improved estimation
approach. Usually, the model selection procedures are based on
the least square estimators. However, in this paper, we propose
to use the improved least square estimators which enable us to

considerably improve the non-asymptotic estimation accuracy.
Such idea was proposed, for the first time, in [9]. Our goal is to
develop these methods for non-Gaussian regression models in
continuous time and to obtain the sharp oracle inequalities. It
should be noted that to apply the improved estimation methods to
the non-Gaussian regression models in continuous time one needs
to modify the well-known James-Stein procedure introduced in
[10] in the way proposed in [11, 12]. So, by using these estimators
we construct the improved model selection procedure and we
show that the constructed estimation procedure is optimal in
the sense of the sharp non-asymptotic oracle inequalities for the
robust risks which are defined in the Equation (5).

2. Improved estimation

Let (¢;).., be an orthonormal basis in L2[0, 1]. We extend
these functions by the periodicwayon R ,ie. ¢,(1)=¢,(r+1)
for any ¢ € R. For estimating the unknown function S in the
Equation (1) we consider it’s Fourier expansion (see, for example,

[13)
S(1)=2,0,¢,(1) and 6,=(5.9,) = [ s(1)¢,(1)ar ()

The corresponding Fourier coefficients can be estimated as

e ®)

We define a class of weighted least squares estimates for S(¢) as

$1=21(j)0,.¢; Q)
j=1

where the weights A € R" belong to some finite set A from

[0, 17"

Now, for the first d Fourier coefficients in Equations (7) we
use the improved estimation method proposed for parametric
models in [12]. To this end we set 0, = (é,,“)lg,-gd . In the sequel

d
we will use the norm |x[; =Y x} for any vector x = (x;),-,

j=1
from R". Now we define the shrinkage estimators as

05, =(1-2(j))0,. (10)
where g(j)= ﬁh.qq» 1, is the indicator of the set 4 and
ol

¢ is some known parameter such that ¢, = % as n — oo. Now
we introduce a class of shrinkage weighted least squares estimates

for S as

Si= 2 A0))6.9, (1)
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We denote the difference of quadratic risks of the estimates in
Equation (11) and Equation (9) as Ay(S):=Ro(S1S5)—
—RQ(S'A,S). Now for this deviation we obtain the following
result.

Theorem 1. Assume that for any vector A € A there exists
some fixed integer d = d(4) such that their first d components equal
to one, ie. A(j) = 1 for 1 <j < d for any 2 € A. Then for any
n > 1and r>0

supsup A, (S) <—c?

0€Q|s||=r

(12)

The inequality (12) means that non-asymptotically, i.e. for
any n > 1 the estimate in the Equation (11) outperforms
in mean square accuracy the estimate in the Equation (9).
Moreover, as we will see below, ne» = % asd — . This means
that improvement is considerable may be better than for the
parametric regression [11].

3. Model selection

This Section gives the construction of a model selection
procedure for estimating a function S in the Equation (1) on the
basis of improved weighted least square estimates and states the
sharp oracle inequality for the robust risk of proposed procedure.

The model selection procedure for the unknown function S in
the Equation (1) will be constructed on the basis of a family of
estimates (S3)1cy .

The performance of any estimate S will be measured by the
empirical squared error
Err, (1) =[Si =S|I’ (13)

In order to obtain a good estimate, we have to write a rule to
choose a weight vector / € A in the Equation (6). It is obvious,
that the best way is to minimize the empirical squared error with
respect to 1. Making use the estimate definition in the Equation
(6) and the Fourier transformation of S implies

Err,(A) = 212(j)(9j,,,)2 - 22/1(j)67_,,6,+ iei (14)

Since the Fourier coefficients (GJ),Zl are unknown, the
weight coefficients (/’t,»)j21 cannot be found by minimizing this
quantity. To circumvent this difficulty one needs to replace the
terms 6,0 by their estimators 6, . We set

6, =00, 9 (15)

n
where &, is the estimate for the noise variance of 0, = ng T=
= pi+ p: which we choose in the following
form

6,= Z i, and 7,,= %fTr,(l)dy,
0

j=l¥nl+1

(16)
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Here we denoted by (Tr,)j21 the trigonometric basis in
L.[0, 1]. For this change in the empirical squared error, one has to
pay some penalty. Thus, one comes to the cost function of the
form
J(A) =22 ()0, =22 A(j)6,.+ 8P, (A) (17)

j=1 j=1
where ¢ is some positive constant, £,(A) is the penalty term
defined as

6.1

n

2
n

P(A)=

(18)

Substituting the weight coefficients, minimizing the cost
function
A" =agrminieat, (1) (19)
in the Equation (11) leads to the improved model selection
procedure
S =Sy (20)

It will be noted that A" exists because A is a finite set. If the
minimizing sequence in the Equation (19) A" is not unique, one
can take any minimizer. In the case, when the value of O, is
known, one can take &, = 0, and P,(A)=0,|Aln".

Theorem 2. For any n > 2 and 0 < § < 1/3, the robust risks

defined in the Equation (5) of estimate in the Equation (20) for
continuously differentiable function S satisfies the oracle inequality

1+36
1-38

o el B,
R(S5,5) < min R (S3,5)+ 5

. @

where the rest term is such that B,n™* — 0 as n— oo for any
e > 0.

The inequality (21) means that the procedure in the Equation
(20) is optimal in the oracle inequalities sense. This property
enables to provide asymptotic efficiency in the adaptive setting,
i.e. when information about the signal regularity is unknown.

4. Monte Carlo simulations

In this section we report the results of a Monte Carlo
experiment to assess the performance of the proposed model
selection procedure in the Equation (20). In the Equation (1) we
choose 1-periodic function S which, for 0 < 7 < 1, is defined as
S(t):‘t—%’,if S+ =<1=3 and S(1) = elsewhere. We

simulate the Equation (1) with the noise process defined as

£, = 05w, + 0.5z (22)
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Table 1 Empirical risks since the accuracy improvement is proportional to the parameter

dimension. We remember that for the nonparametric estimation

! R(3.5) R(S".S) R($.5)/ R(5.S) this dimension tends to infinity, but in the parametric case it is

20 0.0462 0.0331 1.40 always fixed. Therefore, the gain in the non-asymptotic quadratic
100 0.0262 0.0133 1.97 accuracy from the application of the improved estimation methods
200 0.0126 0.00824 1.53 is much more significant in statistical treatment problems of
1000 0.00129 0.00094 1.37 nonparametric signals. Moreover, as shown by the results of
numerical simulation, the improved estimate for non-asymptotic

where z, = z;z 1 Y, N, is a Poisson process with the intensity accuracy exceeds the usual least squares estimators approximately

in 1.5-2 times for the chosen experimental model.
A=1 and (Y;)., is iid. Gaussian (0,1). We use the model

selection procedure defined in the Equation (20) with the weights
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5. Conclusion
In conclusion, we would like to emphasize that in this paper

we developed new model selection procedures based on the
improved versions of the least square estimators. It turns out

that the improvement effect in the nonparametric estimation
is more important than for the parameter estimation problems
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