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1.	  Introduction

The energy management of storage systems based on 
electrochemical batteries is one of the most investigated topics 
in smart grid and transportation issues [1]. In particular, in 
EV and HEV applications the battery pack requires a  Battery 
Management System BMS to optimize the control strategies 
in terms of safety and performance. Such control strategies are 
usually implemented on Energy Storage System (ESS) exploiting 
a  suitable model of the battery pack that ensure an appropriate 
accuracy in the estimation of State of Charge (SOC) and State of 
Health (SOH) while avoiding too large computational complexity. 
In the field of power electronics for automotive applications, the 
trade-off between the response accuracy and the computational 
effort is obtained by using models based on equivalent electric 
circuits [2]. 

In BMS applications, a  significant example about the 
influence of the ESS circuit model can be reported by considering 
SOC estimation methods based on observers [3, 4]. This 
category includes sliding mode, Luenberger, PI-based and other 
similar observers. Their implementation always leads to the use 
of parameter-varying circuit models. In Figure 1, the schematic 
representation of a  generic PI-based observer is shown [5]. In 
such a  case, the correctness of SOC and SOH estimations is 
strongly related to the accuracy of the circuit model response. In 

particular, considering demanding application that shows huge 
current range, the circuit model can provide a  wrong voltage 
estimation that implies large errors in the ESS state evaluation. 

In recent years, several authors have carried out some 
reviews about models for ESS. Significant examples are in 
[6-8]. From a  review of the existing literature, it can be stated 
that a  comprehensive analysis on battery circuit models cannot 
be conducted by considering a  single comparison criterion. In 
this paper, a comparison of different equivalent circuits used to 
model battery packs in the automotive field has been reported 
on the basis of a  multi-criteria analysis, also considering large 
experimental data. 

 

2.	  Energy storage systems modeling

It is possible to sort the main circuit models for ESS used 
in the automotive field in a few main categories, as listed in the 
following.
-	  Basic Models

The basic circuit used to model a  battery is the series 
connection of a voltage generator E

0
 and a  resistor R

i 
[8].  This 

equivalent circuit is shown in Table 3 - model A. E
0
 is the no-load 

voltage at full charge state while R
i
 models the internal and 
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The main software houses in the field of power electronics for 
automotive applications have developed specific battery models 
to be integrated into their simulations platforms. An overview of 
these models is in [8]. In [11] Tremblay et al. have proposed an 
equivalent circuit model derived from Sheperd formulation. This 
model can be used for Lead Acid batteries, Nickel Cadmium and 
Ni-MH technologies. Another ESS model has been proposed 
by Jackey, considering the target of a  fast implementation in 
electronic circuit simulations by performing some approximations 
[12].
-	 Randles models

In this equivalent circuit models category some of the circuit 
elements are time-varying parameters. Their value depends on 
the actual SOC and SOH as well as on external conditions (e.g. 
current rate and temperature). Randles model is often used in 
combination with Kalman Filter (KF). A significant example is in 
[13]. The typical configuration of the Randles circuit is shown in 
Table 3 - model L. The capacitance C

bulk
 models the main charge 

store, its voltage is an indicator of SOC, its capacitance is related 
to actual SOH.
-	 Other circuit models

Many other circuit models can be found in literature. 
Some of them are obtained from the numerical elaboration of 
a  significant amount of experimental data collected for a  given 
application. Unfortunately, in these cases, it is usually impossible 
to re-use the same model for different operating scenarios. Two 
significant examples, presented in [14], are the CIEMAT model 
and the Monegon model.  In [15] an impedance modeling for 
lead acid batteries is presented by Salkind et al. Experimental 
data from the Electrochemical Impedance Spectroscopy (EIS) 
lead to a series impedance model, as described in [16]. Another 
circuit which is fairly widespread is usually named as “third order 
model” [17]. Basic concept is related to parasitic effects during 
charge operation. A parasitic branch is added to a basic Thevenin 
topology.

3.	  Comparative evaluation of ESS circuit models

Features and performance comparison
In Table 1, the information collected from a comprehensive 

literature review about the battery circuit models in the automotive 
field are summarized.  It can be easily observed that none of 
the models can totally fulfill all the requirements. Besides, the 
inclusion of additional parameters in the equivalent circuits and/
or the exploitation of parameter-varying models can satisfy many 
requirements e.g. memory effect, temperature influence and 
so on. In parameter-varying models, the parameters have to be 
continuously tuned by using real-time estimation algorithms. 

In terms of applications and technologies that can be 
associated to each model category, Figure 2 shows that almost 
all the battery models fit different battery technologies. On 

terminal resistances. Higher accuracy can be obtained by taking 
into account the function R

i 
(SOC) [8].  

-	 Sheperd, Unnewehr and Nernst models
These models are obtained starting from stoichiometric 

electrochemical formulations. Different models belong to this 
category and have been proposed by Sheperd, Unnewehr and 
Nernst [7]. The basic Sheperd formulation is in stoichiometric 
form, anyway a transition to a simpler equivalent electric circuit 
model can be obtained by considering acceptable approximations. 
A  popular simplified version, cited in [7], is displayed in Table 
3 - model C:

v t E R i t
SOCmodel i0 $
n

= - -^ ^h h 	 (1)

where µ
s
 is a  constant term which models the variation of the 

voltage waveform v
model

 as a function of the actual SOC. A similar 
formulation can be reported for the Unnewehr and Nernst models 
represented in Table 3 – model D and E, respectively.
-	 RC linear models

The basic RC linear model is shown in Table 3 - model F. 
The RC network R

d
-C

d
 is used to plot the transient behavior of 

ESS during current steps [7, 8]. In some applications extra RC 
networks are included to increase accuracy in voltage estimation 
during transients. A  modified version of the previous model 
is the Thevenin model [8], represented in Table 3 - model G. 
A functional relation is introduced between the no-load voltage E

0
 

and the actual SOC. An additional resistor R
sd
 is often included to 

take into account the self-discharge phenomena, [9].
-	 Runtime models

In the “runtime models” the electric circuit is split in two or 
three sections [6] as shown in Table 3 - model H. The first section 
models the voltage response during a  charge or a  discharge. 
A  secondary section provides an estimation of the actual 
SOC estimation from the voltage on a  capacitor C

capacity
 whose 

capacitance value depends on SOH. An advanced runtime model 
capable of model runtime and current-voltage (IV) waveforms, 
while reducing the complexity is reported in [10]. Such model is 
represented in Table 3 - model I.
-	 Tremblay and Jackey models

CIRCUIT 
MODEL

BATTERY

CHARGER OR LOAD

v
i i(t)

v(t) PI

vmodel(t)

circuit 
parameters
assessment

imposed 
current

Initialization
data

ESS STATE ESTIMATION
SOC, SOH

Figure 1 PI-based observer scheme including the battery circuit model
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waveform provided by the equivalent circuits. In order to assign 
an analytical evaluation of the accuracy, some numerical indexes 
have been introduced. 

For each model, the identification of parameters is not 
trivial. In order to perform an appropriate comparison between 
the models, a  constrained minimums formulation has been 
implemented for the identification of parameters in every models. 
Input data is the forced current i(t) and the corresponding 
voltage v(t) measured at battery terminals. The experimental tests 
are carried out at different current rates C

R
, the environmental 

temperature ranges between 20°C and 40°C. Referring to a generic 
equivalent circuit, the Kirchhoff’s Voltage Law is:

v h x h x h x,model k k k kn n1 1 2 2$ $ $f= + + + 	 (2)

hence, for N tests:
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V H Xmodel $=6 6 6@ @ @ 	 (4)

k  is a  time index and h
ki 

is a  term about the relation between 
v

model,k 
and parameter x

i
. Thanks to the implementation of the 

the contrary, referring to automotive applications, the simplest 
models are usually not suitable to be used in this challenging 
field. In Figure 3 the models are classified on the basis of the 
frequency range related to the main goals in ESS modeling. From 
this chart, it is quite evident that only more complex models 
can be used in a large frequency range to fulfill several modeling 
goals. On the contrary, the simpler models are usually devoted 
to the voltage estimation only while the estimation of SOC and 
SOH requires additional algorithms and/or more complicated 
models. Moreover, the bandwidth for the simpler models can 
be sometimes too narrow for an effective implementation in the 
automotive field.

Experimental comparison
A  large amount of experimental tests has been done using 

the test bench shown in Figure 4, technical data of the main 
components are in Table 2. The power converter used to supply 
AC loads is displayed in Figure 5. The first stage is a 50 kHz push-
pull DC/DC converter connected to the 24 V

DC
 VRLA battery 

pack and controlled in order to obtain a stable 430 V DC bus. The 
second stage is a 17 kHz PWM VSI sine wave inverter connected 
to the DC bus and controlled to ensure a stable 230 V

AC
 50 Hz 

output [18, 19]. The overall efficiency of the converter at rated 
load is 95 %. The control firmware has been developed in a 32 bit 
72 MHz Micro Controller Unit (MCU).

The performance of each model is evaluated by comparing 
the waveform of the measured battery voltage with the voltage 

APPLICATIONS

Electrical Vehicles 
and Automotive

ESS in Renewable 
Energy Plants

Power backup 
systems

Other applications
(aerospace, etc.)

basic 

TECHNOLOGYLead acid Lithium Ions Nickel metal 
hydride Other

otherRC linear
Sheperd, Unnewehr, Nernst

parameter-varying
MODELS 

CATEGORIES

Figure 2 Comparison based on applications and technologies
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Figure 3 Comparison based on goals and dynamics

Figure 4 Schematical representation of the experimental setup

Figure 5 DC/AC power converter
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Even in case of experimental data acquired at different 
temperatures, this identification method allows to obtain a good 
accuracy in the estimation of parameters. Anyway, since in the 
automotive applications the temperature fluctuations can be 
usually very large, it is often required the implementation of an 
estimation algorithms to continuously tune the parameters of the 

constrained minimums formulation, a  set of parameters can be 
assigned to each model in order to reduce the deviation among 
real and model voltage:

X H H H VmeasuredT T1$ $ $, -^ h6 6@ @ 	 (5)

                        Table 1 Models comparison based on main requirements

Models (*) Requirements or performance (**)

Category ID 1 2 3 4 5 6 7 8 9 10 11 12 13

Basic models
A X O O O O O O O O O O O O

B X O O O O O O O O O O O O

Sheperd, 
Unnewehr and 

Nernst

C X O O O O O O O O O O O O

D X O O O O O O O O O O O O

E X O O O O O O O O O O O O

RC linear models
F X X O O O O O O O O O O O

G X X O X X O O O O O O O O

Parameter-varying 
models

H X X O X X O X O O X O O O

I X X X X X O X X O X O O O

J X X O O X O X X X O O O O

K X O O X X O O O O X O O O

L X X O O X X X X O O X X O

Other models

M X X O O X O X X X X O O X

N X X O O X O X X X X O O X

O X X X O X X O O O X O X X

P X X X O X O O O O X O X X

(*) Model ID

A = Basic [6],[8],[14]

B = Basic RSOC [6]

C = Sheperd [7]

D = Unnewehr [7]

E = Nernst [7]

F = RC [8]

G = Thevenin [9]

H = Runtime [8]

I = Runtime IV [8],[10]

J = Tremblay et al. [8],[11]

K= Jackey [8],[12]

L = Randles [13]

M= CIEMAT [14]

N = Monegon [14]

O = Impedance [15],[16]

P = Third order [17]

(**) Requirements and performance in modeling physical phenomena

1 = Voltage estimation during continuous current discharge [7]

2 = Transient behavior, large period pulse current [9]

3 = Transient behavior, short period pulse current [9]

4 = Self discharge [9], 5 = Charge operation modeling [11]

6 = SOC estimation provided by adaptive parameters [13]

7  = Real-time parameters estimation [8],[10]

8  = Real-time and IV curve prediction [8],[10]

9 = Exponential operation area [11],[14], 10 = Peukert effect [10]

11 = Memory effect

12 = SOH estimation provided by adaptive parameters [13]

13 = Temperature effect [14]

X = Requirement fulfilled  O = Requirement not fulfilled
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limited. Charge operation modeling typically implies a  strong 
degradation in accuracy level due to complicated phenomena to 
be modeled, Figure 6 and Figure7. From Figure 7, there is no large 
difference between models in terms of standard deviations related 
to the error values. For each model, larger values of standard 
deviation can be identified at low or high SOC values.

circuit model especially for the simplest models listed in Table 
1 [3]. The analysis of the sensitivity to temperature variations 
in parameters identification and the review of the methods to 
mitigate such effect is out of the scope of this work. 

Considering the VRLA battery pack of Table 2, Table 3 lists 
the parameters identified for each model. The input experimental 
data have been acquired at various initial SOC values (from 10 
to 100 %, steps of 10 %) and for different currents (from -5 to 20 
A, steps of 1 A). The current counting formula [6] is applied 
for those models that require a continuous evaluation of SOC as 
input data. The relation E

0
(SOC) is a quasi-straight line between 

the extreme points (22.8 V; 2 %) and (26.4 V; 100 %) in the plane 
(E

0
; SOC), as provided by the manufacturer.
Over 200 experimental tests at different current and SOC 

values have been scheduled. During the tests, the battery, having 
an initial SOC, is discharged (or charged) at a  given current in 
a  time period from a minimum of 2 hours to a maximum of 10 
hours. For each couple of values i(t) and SOC, the mean relative 
error and the error standard deviation have been calculated for 
each model:

error
k

error

mean

k

k

N

1= =

/
	 (6)

std
error error

N

k mean

k

N

1

2

=
-

=

^ h/
	 (7)

obtaining the 3D plots shown in Figure 6 and Figure 7. The 
standard deviation has been introduced because, in some cases, 
even if the mean error is close to zero, a significant deviation in 
most part of the waveform can be detected. Starting from data 
displayed in Figure 6, Figure 8 and Figure 9, there are shown 
the mean error values for different SOC values at a fixed current, 
while Figure 10 and Figure 11 show the mean error values for 
different current rates at a fixed SOC value.

Examining the experimental results, the first evidence is 
that the mean error in voltage estimation is strongly affected by 
the actual ESS state. In particular, a  significant dependence on 
the SOC actual value can be observed: large deviations can be 
detected at low SOC values for almost all the models, Figure 8 
and Figure 9. On the contrary, looking at Figure 10 and Figure 11 
the influence of current variations on voltage estimation is quite 

Table 2 Technical specifications of the main components in the test bench

V panel Charge regulator Battery pack
Stand-alone DC/AC converter (AC 

loads)

rated power 250 W system voltage 24 V
DC

technology VRLA (x 8) rated power 2 kW

V
OC

37.0 V
DC

rated PV current 20 A
rated voltage 24 V

DC

rated 

input
24 VDCI

SC
8.26 A rated load 20 A

V
MPP

29.8 V
DC

max PV power 520 W
rated capacity 108 Ah rated output

230 V
AC

50 HzI
MPP

7.72 A max PV voltage 100 V
DC

Figure 6 3D plots - Mean relative error related to the voltage  
estimation provided by each equivalent circuit model for different 

currents and SOC values
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Figure 7 3D plots - Standard deviation related to error values in voltage 
estimation provided by each equivalent circuit for different currents and 

SOC
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Figure 8 Mean error vs SOC, current is fixed -2 A
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Figure 9 Mean error vs SOC, current is fixed 10 A

Table 3 Circuit models and parameters

Parameters Equivalent circuit

A
E

0
=25.355 V 

R
i
=0.191 Ω

AE0 vmodel(t)

i(t)Ri

      

B vmodel(t)

i(t)

E0

Ri(SOC)
B

E
0
=25.274 V

R
i,SOC100

=

=0.0165 Ω 

k=1.05

C

E
0
=25.517 V

R
i
=0.193 Ω

µ
s
=4.806 Vadd(SOC)

C  DE0

Ri

vmodel(t)
i(t)

Vadd1(SOC) Vadd2(1-SOC)

EE0
Ri vmodel(t)

i(t)

D

E
0
=22.955 V

R
i
=0.215 Ω

µ
u
=0.041

E

E
0
=25.832 V

R
i
=0.213 Ω

µ
1
=1.176 

µ
2
=0.281

F

E
0
=25.355 V

R
i
=0.181 Ω

R
d
= 0.009 Ω

C
d
=5247 F E0

Ri Rd

Cd
vmodel(t)

i(t)

F

Rsd E0(SOC) G
Ri Rd

Cd
vmodel(t)

i(t)

G

E
0
(SOC) datasheet

R
i
=0.187 Ω

R
d
=0.010 Ω

C
d
=5071 F

R
sd
=100000 Ω

H

E
0
(V

SOC
) datasheet

R
i
=0.197 Ω

R
t
 =0.018 Ω

C
t
=951 F

R
sd
=100000 Ω

C
capacity

=388kF

Rt

CtVrate
Rsd Ccapacity

Vlost(Vrate) 
VSOC

E0(VSOC) 
i(t)H

Ri i(t)

I

E
0
(V

SOC
) datasheet 

R
i
=0.1973 Ω

R
ts
=0.018 Ω

C
ts
=5555 F

R
tl
=0.005 Ω

C
tl
=20000 F

R
sd
=100000 Ω

C
capacity

=388kF

Rts Rtl

Cts CtlI

i(t)
VSOCCcapacityRsd

i(t)
E0(VSOC) 

Ri

J See [8],[11] See [8],[11]

K See [8],[12] See [8],[12]

L

R
i
=0.187 Ω

R
t
=0.010 Ω

C
surface

=5071 F

R
sd
=100000 Ω

C
bulk

=388kF

Ri Rt

CsurfaceRsd Cbulk
vmodel(t)

i(t)

L
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highlighted. The results of the comparative multi-criteria analysis 
show that Thevenin, Runtime and Runtime IV models can be 
considered as the best compromise between performance and 
complexity in standard automotive applications. Nevertheless, 
to reach a  satisfactory accuracy in automotive applications, it 
is usually necessary to use an estimation algorithm capable to 
continuously tune the parameters of the circuit model in order 
to compensate their variation related to large temperature 
fluctuations, SOH degradation and so on.

4.	 Conclusions

This paper deals with a study on the main equivalent electric 
circuits used in ESS modeling for automotive applications. The 
characteristics of each model have been studied and compared by 
means of a multi-criteria approach using both the data gathered 
by an in-depth literature review and those collected by performing 
several experimental tests. Using such a  method, features and 
performance associated to each equivalent circuit have been 
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Figure 10 Mean error vs SOC, SOC is fixed 30 %
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