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MULTI-CRITERIA EXPERIMENTAL COMPARISON
OF BATTERIES CIRCUITAL MODELS FOR AUTOMOTIVE
APPLICATIONS

Electrochemical batteries used in energy storage systems provide a significant contribution to the development of smart grids and green
transportation. In recent years, intensive research activities have been oriented to the optimal management of energy storage systems for power
electronics applications in fast growing industrial sectors as EVs and HEVs. The accurate modeling of electrochemical batteries is fundamen-
tal in the design of control algorithms applied to energy storage systems. Focusing on automotive applications, in this paper a comprehensive
analysis of ESS models based on equivalent electric circuits using a multi-criteria approach is presented. An extensive experimental validation

has been carried out to evaluate the performance of battery models in automotive applications.
Keywords: battery modeling, SOC estimation, SOH estimation, energy storage systems, automotive

1. Introduction

The energy management of storage systems based on
electrochemical batteries is one of the most investigated topics
in smart grid and transportation issues [1]. In particular, in
EV and HEV applications the battery pack requires a Battery
Management System BMS to optimize the control strategies
in terms of safety and performance. Such control strategies are
usually implemented on Energy Storage System (ESS) exploiting
a suitable model of the battery pack that ensure an appropriate
accuracy in the estimation of State of Charge (SOC) and State of
Health (SOH) while avoiding too large computational complexity.
In the field of power electronics for automotive applications, the
trade-off between the response accuracy and the computational
effort is obtained by using models based on equivalent electric
circuits [2].

In BMS applications, a significant example about the
influence of the ESS circuit model can be reported by considering
SOC estimation methods based on observers [3, 4]. This
category includes sliding mode, Luenberger, PI-based and other
similar observers. Their implementation always leads to the use
of parameter-varying circuit models. In Figure 1, the schematic
representation of a generic Pl-based observer is shown [5]. In
such a case, the correctness of SOC and SOH estimations is
strongly related to the accuracy of the circuit model response. In
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particular, considering demanding application that shows huge
current range, the circuit model can provide a wrong voltage
estimation that implies large errors in the ESS state evaluation.

In recent years, several authors have carried out some
reviews about models for ESS. Significant examples are in
[6-8]. From a review of the existing literature, it can be stated
that a comprehensive analysis on battery circuit models cannot
be conducted by considering a single comparison criterion. In
this paper, a comparison of different equivalent circuits used to
model battery packs in the automotive field has been reported
on the basis of a multi-criteria analysis, also considering large
experimental data.

2. Energy storage systems modeling

It is possible to sort the main circuit models for ESS used
in the automotive field in a few main categories, as listed in the
following.

- Basic Models

The basic circuit used to model a battery is the series
connection of a voltage generator E, and a resistor R [8]. This
equivalent circuit is shown in Table 3 - model A. E, is the no-load
voltage at full charge state while R models the internal and
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Figure 1 Pl-based observer scheme including the battery circuit model

terminal resistances. Higher accuracy can be obtained by taking
into account the function R (SOC) [8].
- Sheperd, Unnewehr and Nernst models

These models are obtained starting from stoichiometric
electrochemical formulations. Different models belong to this
category and have been proposed by Sheperd, Unnewehr and
Nernst [7]. The basic Sheperd formulation is in stoichiometric
form, anyway a transition to a simpler equivalent electric circuit
model can be obtained by considering acceptable approximations.
A popular simplified version, cited in [7], is displayed in Table
3 - model C:

Vmodu(l):Eo_Ri‘l'([)_SOLC (1)
where p_is a constant term which models the variation of the
as a function of the actual SOC. A similar

model

voltage waveform v,
formulation can be reported for the Unnewehr and Nernst models
represented in Table 3 - model D and E, respectively.
- RC linear models

The basic RC linear model is shown in Table 3 - model F.
The RC network R-C, is used to plot the transient behavior of
ESS during current steps [7, 8]. In some applications extra RC
networks are included to increase accuracy in voltage estimation
during transients. A modified version of the previous model
is the Thevenin model [8], represented in Table 3 - model G.
A functional relation is introduced between the no-load voltage £,
and the actual SOC. An additional resistor R ,is often included to
take into account the self-discharge phenomena, [9].
- Runtime models

In the “runtime models” the electric circuit is split in two or
three sections [6] as shown in Table 3 - model H. The first section
models the voltage response during a charge or a discharge.
A secondary section provides an estimation of the actual

SOC estimation from the voltage on a capacitor C_ whose

capacitance value depends on SOH. An advanced rur;g;;ﬁe model
capable of model runtime and current-voltage (IV) waveforms,
while reducing the complexity is reported in [10]. Such model is
represented in Table 3 - model 1.

- Tremblay and Jackey models

REVIEW

The main software houses in the field of power electronics for
automotive applications have developed specific battery models
to be integrated into their simulations platforms. An overview of
these models is in [8]. In [11] Tremblay et al. have proposed an
equivalent circuit model derived from Sheperd formulation. This
model can be used for Lead Acid batteries, Nickel Cadmium and
Ni-MH technologies. Another ESS model has been proposed
by Jackey, considering the target of a fast implementation in
electronic circuit simulations by performing some approximations
[12].

- Randles models

In this equivalent circuit models category some of the circuit
elements are time-varying parameters. Their value depends on
the actual SOC and SOH as well as on external conditions (e.g.
current rate and temperature). Randles model is often used in
combination with Kalman Filter (KF). A significant example is in
[13]. The typical configuration of the Randles circuit is shown in
Table 3 - model L. The capacitance C, ,
store, its voltage is an indicator of SOC, its capacitance is related
to actual SOH.

- Other circuit models

models the main charge

Many other circuit models can be found in literature.
Some of them are obtained from the numerical elaboration of
a significant amount of experimental data collected for a given
application. Unfortunately, in these cases, it is usually impossible
to re-use the same model for different operating scenarios. Two
significant examples, presented in [14], are the CIEMAT model
and the Monegon model. In [15] an impedance modeling for
lead acid batteries is presented by Salkind et al. Experimental
data from the Electrochemical Impedance Spectroscopy (EIS)
lead to a series impedance model, as described in [16]. Another
circuit which is fairly widespread is usually named as “third order
model” [17]. Basic concept is related to parasitic effects during
charge operation. A parasitic branch is added to a basic Thevenin
topology.

3. Comparative evaluation of ESS circuit models

Features and performance comparison

In Table I, the information collected from a comprehensive
literature review about the battery circuit models in the automotive
field are summarized. It can be easily observed that none of
the models can totally fulfill all the requirements. Besides, the
inclusion of additional parameters in the equivalent circuits and/
or the exploitation of parameter-varying models can satisfy many
requirements e.g. memory effect, temperature influence and
so on. In parameter-varying models, the parameters have to be
continuously tuned by using real-time estimation algorithms.

In terms of applications and technologies that can be
associated to each model category, Figure 2 shows that almost
all the battery models fit different battery technologies. On
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Figure 3 Comparison based on goals and dynamics

the contrary, referring to automotive applications, the simplest
models are usually not suitable to be used in this challenging
field. In Figure 3 the models are classified on the basis of the
frequency range related to the main goals in ESS modeling. From
this chart, it is quite evident that only more complex models
can be used in a large frequency range to fulfill several modeling
goals. On the contrary, the simpler models are usually devoted
to the voltage estimation only while the estimation of SOC and
SOH requires additional algorithms and/or more complicated
models. Moreover, the bandwidth for the simpler models can
be sometimes too narrow for an effective implementation in the
automotive field.

Experimental comparison

A large amount of experimental tests has been done using
the test bench shown in Figure 4, technical data of the main
components are in Table 2. The power converter used to supply
AC loads is displayed in Figure 5. The first stage is a 50 kHz push-
pull DC/DC converter connected to the 24 V. VRLA battery
pack and controlled in order to obtain a stable 430 V DC bus. The
second stage is a 17 kHz PWM VSI sine wave inverter connected
to the DC bus and controlled to ensure a stable 230 V, . 50 Hz
output [18, 19]. The overall efficiency of the converter at rated
load is 95 %. The control firmware has been developed in a 32 bit
72 MHz Micro Controller Unit (MCU).

The performance of each model is evaluated by comparing
the waveform of the measured battery voltage with the voltage
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Figure 4 Schematical representation of the experimental setup
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Figure 5 DC/AC power converter

waveform provided by the equivalent circuits. In order to assign
an analytical evaluation of the accuracy, some numerical indexes
have been introduced.

For each model, the identification of parameters is not
trivial. In order to perform an appropriate comparison between
the models, a constrained minimums formulation has been
implemented for the identification of parameters in every models.
Input data is the forced current i(z) and the corresponding
voltage v(7) measured at battery terminals. The experimental tests
are carried out at different current rates C,, the environmental
temperature ranges between 20°C and 40°C. Referring to a generic
equivalent circuit, the Kirchhoff’s Voltage Law is:

Vimodelk = hu X1+ he X+ ...+ hy X, (2)

hence, for N tests:

Vimodel, 1 hy he ... hu

Vimodel,2 ha hyn ... hu X1
= 1 3
Vimodel,k ha he ... huw ( )
Vimodel N hw hywe .. hw
[Vmodex]:[H]'[X] (4)

k is a time index and hki is a term about the relation between

v and parameter x. Thanks to the implementation of the
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Table 1 Models comparison based on main requirements

Models (*) Requirements or performance (**)
Category ID 1 2 3 4 5 6 7 8 9 10 11 12 13
A X O O O O O o o o 0 0 [0} [0}
Basic models
B X O O O O O o o o (0] 0 0 [0}
Sheperd, C X O O O O O o o o 0 0 [0} [0}
Unnewehr and D X O [0} (0} O O O [0} [0} (0} (0} (0} (0}
Nernst E X 0 0O 0 0 00O 0O 0O 0 0O O O
F X X O O O O o o o 0 0 0 0
RC linear models
G X X O X X O o o o 0 0 0 0
H X X O X X O X o o X 0 0 0
I X X X X X O X X o X (0] (0] (0]
Parameter-varying ] X X 0 0 X 0 X X X 0 0 0 0
models
K X O o X X O o o o X (0] (0] (0]
L X X O O X X X X o 0 X X 0
M X X O 0O X O X X X X (0] (0] X
N X X O O X o0 X X X X 0 0 X
Other models
[0} X X X O X X O o o X (0] X X
P X X X O X O o o o X 0 X X
(*) Model ID

A = Basic [6],[8].[14]
B = Basic RSOC [6]
C = Sheperd [7]

D = Unnewehr [7]

E = Nernst [7]
F=RC [8]

G = Thevenin [9]

H = Runtime [8]

I = Runtime IV [8],[10]

J = Tremblay et al. [8],[11]
K= Jackey [8],[12]

L = Randles [13]

M= CIEMAT [14]

N = Monegon [14]

O = Impedance [15],[16]
P = Third order [17]

(**) Requirements and performance in modeling physical phenomena

1 = Voltage estimation during continuous current discharge [7]

2 = Transient behavior, large period pulse current [9]

3 = Transient behavior, short period pulse current [9]

4 = Self discharge [9], 5 = Charge operation modeling [11]

6 = SOC estimation provided by adaptive parameters [13]

7 = Real-time parameters estimation [8],[10]
8 = Real-time and IV curve prediction [8],[10]

9 = Exponential operation area [11],[14], 10 = Peukert effect [10]

11 = Memory effect

12 = SOH estimation provided by adaptive parameters [13]

13 = Temperature effect [14]

X = Requirement fulfilled O = Requirement not fulfilled

constrained minimums formulation, a set of parameters can be
assigned to each model in order to reduce the deviation among
real and model voltage:

[(X]=(H"-H)" H [ Vicasirea] (5)

Even in case of experimental data acquired at different
temperatures, this identification method allows to obtain a good
accuracy in the estimation of parameters. Anyway, since in the
automotive applications the temperature fluctuations can be
usually very large, it is often required the implementation of an
estimation algorithms to continuously tune the parameters of the
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Table 2 Technical specifications of the main components in the test bench

Stand-alone DC/AC converter (AC

N

V panel Charge regulator Battery pack loads)
rated power 250 W system voltage 24V, technology VRLA (x 8) rated power 2 kW
Ve 3710V, rated PV current 20 A rated
] rated voltage 24V, . 24V,
L. 8.26 A rated load 20 A input
\Y 29.8V max PV power 520 W 230V
MPP be rated capacity 108 Ah rated output A
Lyep 172 A max PV voltage 100 V. 50 Hz
circuit model especially for the simplest models listed in Table L Basic L Basic Rgoc
1 [3]. The analysis of the sensitivity to temperature variations é*j_m I e\i i . 1o
in parameters identification and the review of the methods to £ el lu :Z:'a ” 0
mitigate such effect is out of the scope of this work. E w 00 o 15 jn-m E 60 1 T -
~(0r) 40 2 S ~eor 140 o FiiD. -
Considering the VRLA battery pack of Table 2, Table 3 lists SOC(%) ~ * -5 © “current(A) | SOC(%) ~ 0 "5 © “current (A)
the parameters identified for each model. The input experimental = Sheperd S Unnewehr
data have been acquired at various initial SOC values (from 10 = _—— IS, ‘ o
to 100 %, steps of 10%) and for different currents (from -5 to 20 g0 = I.m 510 l"“
. . . g s |5 80 2
A, steps of 1 A). The current counting formula [6] is applied “S(jgf'([,f:;') 020 50 Scu':‘-'rcln)t ([}\) SOC‘(‘E/?.]"" W0 ECUII?I'CII:I(.[:\)
for those models that require a continuous evaluation of SOC as n Nernst [ RC
input data. The relation £ (SOC) is a quasi-straight line between S : I o "
the extreme points (22.8 V: 2%) and (26.4 V; 100%) in the plane 2" G I 20 |
(E,; SOC), as provided by the manufacturer. E w 0% == B wy = — e
Over 200 experimental tests at different current and SOC SOC(%)™ * s  cumrent (A) | SOC(%)™ 20 "5 0 “current (A)
values have been scheduled. During the tests, the battery, having = Thevenin = Runtime
an initial SOC, is discharged (or charged) at a given current in G"a ': ‘ fo ;" il:i ‘ Re
a time period from a minimum of 2 hours to a maximum of 10 “E':-'“ I,m fg“:-"’ l_..]
, . 580y ;20 (o 8 520
hours. For each couple of values 1.( t). and SOC, the mean relative SOCERP 0 50 S @A) SOCH™ 20 5 0 Seuttent (A)
error and the error standard deviation have been calculated for B Runtime IV L Tremblay
each model: = T < 10 1.
gv s 20 0
N 5:"{' - I.m E:.IO I-m
Zerrork 580 g o o 15 20 S 80 g = s N
errotmean = HT (6) SOC(%)™ 20 5 0 Scurrent(A) | SOC(%)™ 20 -5 0 “current (A)
L Jackey Randles
N 2
> (error,— error.? S0 A o fe
std =14/ = GIEREET B |
! 0

obtaining the 3D plots shown in Figure 6 and Figure 7. The
standard deviation has been introduced because, in some cases,
even if the mean error is close to zero, a significant deviation in
most part of the waveform can be detected. Starting from data
displayed in Figure 6, Figure 8 and Figure 9, there are shown
the mean error values for different SOC values at a fixed current,
while Figure 10 and Figure 11 show the mean error values for
different current rates at a fixed SOC value.

Examining the experimental results, the first evidence is
that the mean error in voltage estimation is strongly affected by
the actual ESS state. In particular, a significant dependence on
the SOC actual value can be observed: large deviations can be
detected at low SOC values for almost all the models, Figure 8
and Figure 9. On the contrary, looking at Figure 10 and Figure 11
the influence of current variations on voltage estimation is quite

= 15 20 B0
Scurent (A) SOC(%)™ 2 5 0

80
SOC(H) ™ 20 G

L&

520
5 1015
current (A)

Figure 6 3D plots - Mean relative error related to the voltage
estimation provided by each equivalent circuit model for different
currents and SOC values

limited. Charge operation modeling typically implies a strong
degradation in accuracy level due to complicated phenomena to
be modeled, Figure 6 and Figure7. From Figure 7, there is no large
difference between models in terms of standard deviations related
to the error values. For each model, larger values of standard
deviation can be identified at low or high SOC values.

VOLUME 20

COMMUNICATIONS 1/2018 (1



KOVMNKOCe REVIEW

C O M M UNICATI ON.S

Table 3 Circuit models and parameters

Basic Basic Rsoc
Parameters Equivalent circuit ;i 1 | [
[ 5| 5
E~25355V % HER “ B
0 R; i) 0 g0 =TS 2" ol o 15 ?
Rl_=0,191 Q p [ SOC(%) ' 20 5 0 Sourrent (A) | SOC%)™ 2 50 Scurrent (A)
Vinodel(t)
£ 25074V o(% A el ; Sheperd s Unnewehr .
_ R(SOC) § 4 o 3 ;
p o R e gy | A |
=0.0165 Q Ey B ‘vmam(t) Mg o e R ="
SOC(%) " 2 5 0 “cyrrent (A)  SOC(%)" 20 s 0 Scurrent (A)
k=1.05 Nernst RC
E=2551TV S T I
= 4| = 4
C  R-01930 3 | HEF ~ |:
604 510, 15, 2, M: 50 40 s 10 15 20
“=4.806 SOC(%) 20 -5 0 “current (A)  SOC(%) ™ 2 5  “cyrrent (A)
! R;  Vaa(SOC) : :
£-22955V ol i(t) L Thevenin e Runtime .
model(t S 6|88 6
D R=02150 ”* CD :V wlt = et ;
20.041 Voaat(SOC) Vggas(1-SOC) T | g !
,J“ * © i(t N SOC(%) 20 ) 750 5L‘Lﬂrrunl (A) SOC'(%Jm 030 :cmTu:n (A)
E-25832V g0 g Runtime IV Tremblay
o 8 8
R=02130Q g l: S8 = I
E ! = 4 _';; 4
u =117 % - | HEHS I;
”2:0281 Sl)('(‘;'gl'm 20 kﬁ 0 Scu‘r‘:ﬂc:n (A) S()(‘(‘?EL:]w 0 5 0 scu:'tl"mllrl ('/\)
acKe
25355V . Jackey ne Randles .
R=0.181Q S . |§ o ~ |§
R=0.009 O e LU WV S | B O g0
B £ [v ) SOC(%) 2 -5 current (A) | SOC(%) ~ * -5 current (A)
C52M4TF 'F G " Figure 7 3D plots - Standard deviation related to error values in voltage
E(SOC) datasheet R “ estimation provided by each equivalent circuit for different currents and
R=0187Q | R | S0C
' RaS O ESOT ;e [vmoaut)
G R=0010 Q 20
d ErrOTmean(%) i
C=5071 F oy —r7” Z Biier
0 — == Sheper: oc
R 100000 Q -10 = Unnewehr
E(V,,) datasheet 29
L 0/)
R=0197 O A 10 | _errormean(% — Nemst
i Rt Vios(Vrad)_ Ri,i(t) 0 f = Rievenin
H R,=0.013 Q R |Co Vsoc -10 | = Runtime
B v, m[ t S capacity A } Eo(Vsoo )‘ 20
C1E It Hio 20
R_ =100000 Q 10 errormean(%) = Runtime IV
sd Tremblay
C. =388kF 100 = Jacke
capacity - == Randles
E(Vy,) datasheet 20 15730 30 40 30 60 70 80 90
R=0.1973 Q SOC (%)
R =0.018 Q R Figure 8 Mean error vs SOC, current is fixed -2 A
s .
C=5555F
1 s R Ceapaciry 20 170 moan(%5) i i i ) ] .
R=0.005 0 T o Pl — —] -ggiiﬁ Rsoc
€,~20000 F 410 ] =Unnewehr
R ~100000 Q %8 —
Cmpacitv:388kF 10 errormean(%) E _E(ejmst
] See [8].[11] See [8].[11] _100 — ! L
K See [8],[12] See [8],[12] %8
R=0.187 Q 10 | errormean(?) ] =Runtime IV
i 0 == ] = Tremblay
R=0.010 Q R R 10 / ] :i]{a:rll(g es
L G0 F RZ Cpif ], Coe [V 20 1020 30 40 350 60 70 80 90
R =100000 O SOC (%)
C =388kF Figure 9 Mean error vs SOC, current is fixed 10 A

bulk
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Figure 10 Mean error vs SOC, SOC is fixed 30%

4. Conclusions

This paper deals with a study on the main equivalent electric
circuits used in ESS modeling for automotive applications. The
characteristics of each model have been studied and compared by
means of a multi-criteria approach using both the data gathered
by an in-depth literature review and those collected by performing
several experimental tests. Using such a method, features and
performance associated to each equivalent circuit have been

KOMNIKOCIe
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Figure 11 Mean error vs SOC, SOC is fixed 80%

highlighted. The results of the comparative multi-criteria analysis
show that Thevenin, Runtime and Runtime IV models can be
considered as the best compromise between performance and
complexity in standard automotive applications. Nevertheless,
to reach a satisfactory accuracy in automotive applications, it
is usually necessary to use an estimation algorithm capable to
continuously tune the parameters of the circuit model in order
to compensate their variation related to large temperature
fluctuations, SOH degradation and so on.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

191

[10]

[11]

TUMMURU, N. R., MISHRA, M. K., SRINIVAS, S.: Dynamic Energy Management of Hybrid Energy Storage System with High-
Gain PV Converter. IEEE Transactions on Energy Conversion, 30(1), 150-160, 2015.

CUGNET, M., DUBARRY, M., LYAW, B.: Secondary Batteries - Lead-Acid Systems - Modeling. Reference Module in Chemistry,
Molecular Sciences and Chemical Engineering Encyclopedia of Electrochemical Power Sources, Elsevier, 816-828, 2009.
CACCIATO, M., NOBILE, G., SCARCELLA, G., SCELBA, G.: Real-Time Model-Based Estimation of SOC and SOH for Energy
Storage Systems. IEEE Transactions on Power Electronics, 32(1), 794-803, 2016.

CACCIATO, M., NOBILE, G., PULVIRENTI, M., RACITI, A., SCARCELLA, G., SCELBA, G.: Energy Management in Parallel
Hybrid Electric Vehicles Exploiting an Integrated Multi-Drives Topology. Proceedings of International Conference of Electrical
and Electronic Technologies for Automotive, Italy, 2017.

CACCIATO, M., NOBILE, G., SCARCELLA, G., SCELBA, G., SCIACCA, A. G.: Energy Management Optimization in Stand-
Alone Power Supplies Using Online Estimation of Battery SOC. Proceedings of IEEE 18th European Conference on Power
Electronics and Applications (EPE), Germany, 2016.

SEAMAN, A., DAO, T., MCPHEE, J.: A Survey of Mathematical-Based Equivalent-Circuit and Electrochemical Battery Models
for Hybrid and Electric Vehicle Simulation. Journal of Power Sources, 256, 410-423, 2014.

HUSSEIN, A., BATARSEH, I.: An Overview of Generic Battery Models. Proceedings of IEEE Power and Energy Society General
Meeting, USA, 1-6, 2011.

MOUSAVI, S. M., NIKDEL, M: Various Battery Models for Various Simulation Studies and Applications. Renewable and
Sustainable Energy Reviews, 32, 477-485, 2014.

LL J., MAZZOLA, M.: Accurate Battery Pack Modeling for Automotive Applications. Journal of Power Sources, 237, 215-228,
2013.

CHEN, M., RINCON-MORA, A.: Accurate Electrical Battery Model Capable of Predicting Runtime and I-V Performance. IEEE
Transactions on Energy Conversion, 21(2), 504-511, 2006.

TREMBLAY, O., DESSAINT, L.: Experimental Validation of a Battery Dynamic Model for EV Applications. World Electric
Vehicle Journal, 3, 1-10, 2009.

VOLUME 20

COMMUNICATIONS 1/2018

* 103



KOVMNKOCe REVIEW

C O M M UNICATI ON.S

[12] JACKEY, R. A.: A Simple, Effective Lead-Acid Battery Modeling Process for Electrical System Component Selection. Proceedings
SAE World Congress and Exhibition, USA, paper 2007-01-0778, 2007.

[13] BHANGU, B. S., BINGHAM, C. M., STONE, D. A., BENTLEY, P.: Nonlinear Observer techniques for Prediction State-of-Charge
and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles. IEEE Transactions on Vehicular Technology, 54(3), 783-
794, 2005.

[14] ACHAIBOU, N., HADDADI, M., MALEK, A.: Lead Acid Batteries Simulation Including Experimental Validation. Journal of
Power Sources, 185(2), 1484-1491, 2008.

[15] SALKIND, A., SINGH, P., CANNONE, A., ATWATER, T., WANG, X., REISNER, D.: Impedance Modeling of Intermediate Size
Lead-Acid Batteries. Journal of Power Sources, 116, 174-184, 2003.

[16] STROE, D. 1., SWIERCZYNSKI, M., STROE, A. 1., KNAP, V., TEODORESCU, R., ANDREASEN, S. J.: Evaluation of Different
Methods for Measuring the Impedance of Lithium-Ion Batteries during Ageing. Proceedings of Tenth International Conference on
Ecological Vehicles and Renewable Energies (EVER), Monaco, 1-8, 2015.

[17] WANG, H., LI, G, LI, M., JIANG, Z., WANG, X., ZHAO, Q.: Third-Order Dynamic Model of a Lead Acid Battery for Use in
Fuel Cell Vehicle Simulation. Proceedings of IEEE Mechatronic Science, Electric Engineering and Computer Conference (MEC),
China, 715-720, 2011.

[18] ATTANASIO, R., CACCIATO M., CONSOLI A., SCARCELLA G., TESTA A., GENNARO F.: A Novel Converter System for
Fuel Cell Distributed Energy Generation. Proceedings of IEEE Annual Power Electronics Specialists Conference (PESC "05),
Brazil, 1621-1627, 2005.

[19] CACCIATO M., CONSOLI A., SCARCELLA G., SCELBA G., TESTA A.: Modified Space-Vector-Modulation Technique for
Common Mode Currents Reduction and Full Utilization of the DC bus. Proceedings of 24th Annual IEEE Applied Power
Electronics Conference and Exposition (APEC 2009), USA, 109-115, 2009.

1040 COMMUNICATIONS 1/2018 VOLUME 20



