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Resume

Traffic in Mexico City poses a serious problem of vehicle saturation that causes
a decrease in speed and increased transport time in the streets that suffer
mobility collapses. A macroscopic model of vehicular traffic is used to show the
effect of viscosity on the vehicular variables (speed and vehicle density), applied
to two avenues in Mexico City, is studied. The input parameters were calculated
following the Greenberg model. As the original model presents numerical
divergences, the two assumptions corresponding to conservation of the vehicle’s
mass and the viscous term are modified. The results suggest that the viscosity
depends on time and that it can be adapted to recommend modifications in
urban mobility parameters, or even to implement the public planning policies
in construction of infrastructure for urban transport, to make vehicle flow more
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1 Introduction

Transport is a part of the urbanization process
produced within a host of intentions, such as real estate,
residential developments, productive location and points
of commerce in its various formats. The transport is
implicit to any of them and together they continually
reorganize the urban spaces, forming and destroying
networks of exchange of these activities. The transport role
is very significant for organization of urban spatiality since
transport systems in large metropolises are essential for
labor and student mobility, circulation of goods, delivery
of services, and many other reasons in the productive and
social spheres. According to the differential intensities
of local, intrametropolitan, and even regional scales, the
transport saturation derived from vehicular flows and
vehicular densities generates frequent problems of mobility.

Time plays a critical role, jointly mobility is associated
with transport efficiency. The traffic volume also responds
to a group of elements, such as increases in population
density, structure of the hierarchical road map, routes
of means of transport and their connectivity, mass of
circulating vehicles and the transport hubs that are
configured in the metropolis by the origin-destination
concentrations. Vehicular traffic is studied over the world
because of increase of the mobility generalized problems.
Most of the studies are centered in the vehicular flow, in

which they relate the vehicular speed and the density of
the traffic.

Vehicular traffic models have been developed since
1935. From measured data of speed, vehicular flow and
vehicular density using a 16mm simplex movie camera
to take pictures and an electric motor driven by an
automobile storage battery operated the camera with
a constant time interval between exposures, Greenshields
[1] deduced one of the first traffic models. Later, Lighthill
and Whitman [2] and Richards [3] built their model based
on the advection equation. Macroscopic traffic models were
made based on the Navier-Stokes and continuity equations,
for example, the Greenberg model [4], Newell model [5],
Paveri-Fontana model [6], Helbing model [7], among others
[8-16]. A genealogy of traffic models has been described by
van Wageningen-Kessels et al. [17].

Most of these models are validated in segments of
streets or avenues in which they do not have intermediate
entries or exits of vehicles, i. e. the number of cars that
enter from one side of the road, is the same as the one
that leaves from the other side. In that sense, there is
a conservation of mass. However, most vehicular roads
do not have that property. Some streets end in avenues,
while there are streets that interconnect with other ones. In
this aspect, there is no necessarily a mass conservation. For
instance, the Greenberg model is based on the fundamental
equations of fluid mechanics, assuming that the vehicle
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flow is compressible. Greenberg’s data match with his
model because they referred to the extreme sides of the
Lincoln tunnel under the Hudson River, which divides New
Jersey from New York. In this place, there is no possibility
of an intersecting street. Greenberg proposes that speed is
a function of vehicle density, which simplifies the equations
for the analytical solution.

On the other hand, vehicular traffic in Mexico City
entails serious challenges due to saturation, conflicting
nodes, intermittent connectivity, because the transport
demand is greater than the transport offer and the growing
vehicle park, all of them causing the drop-in velocity.
Because of the traffic saturation, travel time increases
gradually. According to travel costs, collective public
transport does not raise tariffs, but private transport
expenditures augment, as well for transport companies.

In the Metropolitan Area of Mexico City (ZMCM) in
2017, there were 34,558,217 trips per day, within the urban
area of 214,791 hectares [18]. In 1994 there were 20,573,700
trips per day [19], that is, these increased by more than
608,000 trips per year. In Mexico City, the average travel
distance is 20.9km. The mean speed of all the kinds of
transport has fallen from 38.5km h' in 1990 to 13.8km
h' in 2017 [20]. The average speed of a bus is 8.8km h
the mean velocity in the metro is 21.1km h?, in express
transport (Metrobus) is 13.9km h'. The average travel
time is 90.6 minutes and it continues to increase [21]. The
vehicular speed between the origin and destination points
are decreasing slowly [22].

The problems that aggravate the road congestion in
the ZMCM are associated with the growing private fleet. In
2017 it reached more than 6 million vehicles [18], the private
only mobilize 30% of total trips, and the concessional has
a low capacity of transportation [21]. The urban layout and
the continuity of the primary roads are interrupted because
of the conurbation of more than 145 native towns. With
immigrants from the whole country, these old towns grew
rapidly conserving a very narrow road network.

In this paper, a modified Greenberg model is used,
which considers the loss or gain of vehicular mass in the
selected road segment with intermediate inputs and outputs
[23-25], and the viscosity term to the motion equation, to
simulate the traffic variables in two cases. The viscosity is
interpreted as the high-grade driver anticipation [26].

The model is solved completely using a numerical
method. The initial and boundary conditions (Dirichlet
conditions [27-29]) of the traffic model are measured data
about speed, vehicular density and vehicular flow that
has been taken at peak hours, registered for 3 hours in
a working day in two roads of Mexico City.

The objective of this work was to study the effect
of viscosity on the traffic variables by simulating with
a modified Greenberg model, using measured data of the
traffic variables as the initial and boundary conditions.
Simulations are carried out to observe behavior of the
traffic variables in the entire domain when the viscosity
varies. The viscosity is important because it can relate to
urban mobility parameters.

The work is organized as follows. The data collection
methodology is shown in section 3. The modified traffic
model is presented in a general way in section 2. The places
of observation and data collection in Mexico City, as well
as the data analysis, are shown in section 4. Section 3.2
contains the numerical method used to solve the system
of partial differential equations of the traffic model and
the numerical results are presented in section 5. Finally,
a summary is presented in section 6.

2 Theoretical framework
2.1 The Greenberg model

Greenberg built his model from the one-dimensional
motion of a fluid equation [30]:

Du _ _ c*ok
Dt~ koox M

where u: traffic velocity, km per hour, k: density of traffic,

vehicles per km; x: distance along the road, ¢: time, c:

a parameter that is determined from the state of the fluid

and D/Dt = 9/t + ud/dx is the material derivative.
The continuity equation is written as:

ok | 9q _
ot + Fr 0. @)

Here q = u k is the traffic flow [vehicles per hour], it
represents the flow rate in fluids. All of them are functions
of the position x and the time ¢:

q(x,t) = ulx,t)k(x,t). 3)

The Greenberg’s model [4] has a significant assumption,
which is demonstrated that it was not always satisfied. That
supposition is the velocity depends on the density u = u(k),
and then the system Equations (1) and (2) becomes the
following equation':

du _ ¢ @

The solution of Equation (4) is

u(k) = cln(%>’ ®)

where kj., is the density for the traffic jam (u = 0). That
means the density as a function of the velocity has the form:

k(u) = koe <. ©

2.2 Viscosity in the traffic

Equation (1) contains terms that are interpreted as
actions concerning drivers: the nonlinear term (%du/3x )
is the convection and it represents changes of the average

! see [4] for details.
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speed in a very small cell due to vehicles entering with
different speeds; the pressure term (c’k '9k/dx) is the
anticipation, that is, changes in speed due to anticipation
of drivers in traffic conditions later on [26]. In this case, the
pressure is directly proportional to the density (P = ¢*k),
since the vehicular flow is assumed to be an ideal gas [24].
In this work, the viscous term is added as a pressure for
which the speed changes with respect to the position:

P=ch—nL. o)

The viscosity term in the acceleration equation is
represented by the diffusive term in the traffic system.
The speed diffusion is useful to improve the numerical
properties of a model. Besides that, it helps to investigate
the effects of numerical diffusion, which are unavoidable
when numerically integrating macroscopic models [31]. The
modified Greenberg model is:

2 2
Qu ou cak+ﬂau

o T T T o TR ®
2
O 20— Au), ©)

where 77 is the viscosity [km h'] and f{(Z) must be proposed,
estimated, or measured from the observational data.

The viscosity term can represent the driver’s
anticipation against any event [26]. If &, is the visibility
distance (the distance at which the driver detects the
eventuality: a person crossing the street, a bottleneck, a car
slowing down, etc.) and T, the anticipation time, i.e. the
time that the driver takes to prevent a crash, then one can
define the viscosity as:

S
n==,-

(10)

3  Methodology
3.1 Data collection

Once the observation points are chosen, the traffic
variables involved in the model are measured, namely,
speed u, density k and capacity q. The speed is measured
by fixing the two points on the road and observing the time
that the vehicles spend to travel the distance between them.
Subsequently, the distance between these two points is
measured. With this, the average speed is calculated.

To measure the flow rate, vehicles passing through
a fixed point in the road for one minute were counted. The
number of vehicles per hour is estimated by multiplying the
quantity measured by 60.

The density was measured by counting the number of
vehicles in the segment between the points that were set
to measure the speed. Thus, the number of vehicles per
unit of distance was obtained. With a simple proportional
relationship, the number of vehicles per km is determined.

These measurements were made every 10 min for
approximately 3 h. To obtain an estimate of the intermediate

points among the measured data (where no measurements
were taken), a cubic spline interpolation was carried out with
each variable. The interpolated data were entered as input
values in the model. Thus, the known values of the variables
at the borders (Dirichlet conditions [27-29]) were obtained.

The model is solved by the finite difference method in
combination with an iterative method [32-33]. The details
are shown in section 3.2.

3.2 Numerical method

The system of the Equations (8)-(9) was solved
numerically using the second-order finite differences
method, backward for time and centered for position.
The method convergence was evaluated increasing the
number of mesh points. The mesh refinement finished
when the solution was practically the same between the
two consecutive refinements. The initial and boundary
conditions were taken from the measured data. There
was no assumption that velocity depends on density, as
Greenberg did it (see section 2), the system of Equations
(8)-(9) was solved as a whole. The solutions convergence
was verified through the Courant number, defined as [24, 34]:
Co = lulSL. (1

If this non-dimensional number is lower than 1, then
the solution converges.

The functions k(0, t), k(, t),u(0, t) and u(l, t) (where [
is the end of the line) were measured in discrete values, and
f(t) was calculated with those discrete values (see section
5). Then, all these functions have discrete domains. The
cubic spline method was used to calculate the intermediate
points and matching with the numerical meshes.

The numerical code was written in Matlab-script.

4 Observational traffic data

The observational data were obtained at two places
in Mexico City, in a major avenue: Insurgentes at South of
the city and Mexico-Toluca freeway atn the western city
entrance. These ways were chosen because they had a few
lateral inners and exits, so that the function f should be very
close to zero, but this was not quite possible.

4.1 Insurgentes Sur Ave

Figure 1 shows the first road section of the collected
traffic data. This record was made on November 21, 2018.
The variables u(x, t), k(x, t) and q(x, t) were taken for three
and a half hours at two points. An observer was collocated
in a pedestrian bridge at South (point 1), and the other one
was placed on a pedestrian bridge at the North (point 2).

The measured flow’s direction is South-North, so the
input is at 1 and the output is at 2. The measurements were
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Figure 2 (a) Density of traffic at point 1, (b) Density of traffic at point 2, (c) Velocity of traffic at point 1,

Figure 1 Insurgentes Sur, Mexico City, taken from Google Earth Pro 2018
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(d) Velocity of traffic at point 2, see Figure 1

made from 6:40 hrs to 10:20 h. One can see that there is a big
vehicle exit-entrance at 350m from 1 and another small
vehicle’s entry at 200m from 1. In this case, Ax ~ 1 km and
At = 10 min,i.e. At =1/6 h.

One can see in Figure 2 that the density and velocity
of traffic have a qualitatively opposite behavior, as

VOLUME 23

Greenberg’s prediction says. One also can compare the
measured traffic low Queasired and the calculated traffic
10w Qeateutated = Romeasured X measured , Where the bar means
“the average of.” Even though the slope of the straight line
is close to 1, the linear regression shows a weak correlation
between Quueasured aNd Qeatcutated (R2= 0.28 Figure 3).
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Table 1 Some combinations of anticipation distance, time and viscosity (Equation (10))

6y (m) Ta (s) 7 (kmh?)
250 1.5 600
500 4 450
290 2.75 380
210 3.4 220
100 3.6 100
50 9 20
9000 f(y) = 2.19859648848172 x — 1707.97833410053
8000 R2=0.321234587033077 n
£ 7000
é 6000
< 5000
0]
® 4000 -
% 3000
;! 2000 = Data
1000 = %)
0
1500 2000 2500 3000 3500 4000
Q_measured (veh/h)
Figure 6 Relation between the calculated traffic flow and the measured
traffic flow for the Mexico-Toluca case
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Figure 7 Courant number, 1 =600 km k', (a) for the Insurgentes Sur case, (b) for the Mexico-Toluca case

4.2 Mexico-Toluca free road

Figure 4 shows the second road section of the traffic
data collection. This record was made on November 13,
2018. The variables u(x, t), k(x, t) and q(x, t) were taken
for three hours at two points. An observer was placed on
a pedestrian bridge at West (point 1) and the other was put
in a pedestrian bridge at East (point 2).

The measured flow’s direction is West-East, so the
input is 1 and the output is 2. The measures were taken
from 7:30 h to 10:30 h. One can observe that there is
an important vehicle exit at 250m from 1. In this case,
Ax ~ 0.8kmand At = 1/6 h.

In Figure 5, one can see a contrary behavior of density
and velocity too, but it is not as evident as in Figure 2. In the
same way as in the Insurgentes Sur case, one can compare
the measured traffic low Quueasued and the calculated traffic

flow Qeatcutaea (see Figure 6). In this case, the slope of the
straight line is greater than 2, besides the linear regression
shows a weak correlation between Queasured a0d Qeatentated
(R*=0.32).

5 Numerical results

Numerical results are presented as the three-
dimensional graphs of variables u(x, t) and k(x, ¢). In
addition, a time series of those variables are shown in
two-dimensional graphs, which are presented at different
values of fixed positions. Finally, the space-phase (known
as “fundamental diagram” [17, 31, 35-36]) is presented
for combinations of the three variables: u, k and q. The
calculations were carried out varying the parameter 77,
which took the values:
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Figure 8 Phase portrait of the density and the velocity for the Insurgentes Sur case
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n€{0,1,5,10,20,50,100, 220, 380,450,600 } km h''.

These values were defined based on the Kerner-
Konhauser fundamental diagram [37-38], who have reported
the value of 7 = 600 km h.

Table 1 shows several combinations of the visibility
distance and the anticipation time to get various values of
the viscosity.

To see the convergence of the solutions, the behavior
of the Courant number in terms of time is shown in Figure
7. In Figure 7(a), the Courant number is greater than 1 only
at the beginning, but its values become lower than 1 for the
rest of the time. In the Mexico Toluca case (see Figure 7(a)),
the Courant number is always lower than 1 all the time,
therefore the numerical method is stable in both cases.

Function f of the non-homogeneous continuity equation
(Equation (9)) was calculated as follow:

f(zf)~ﬁ—/'§+ﬂ (12)

Ax’

with Ak = ks (t) — ki(t) and Ag = q2(t) — q1(t) (see
Figures 1 and 4).

5.1 Numerical results for Insurgentes Sur Avenue
Insurgentes Sur is a 2-lane road for private vehicles

and one lane confined to public transport service. If one
estimates the number of vehicles in the case of traffic jams,
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Figure 12 Normalized velocity time series for several values o
fthe 1 at the fixed point x = 500 m, Insurgentes Sur case

there is a maximum of 750 veh km™ (taking into account
vehicles of 4m in length and without a space between
them).

The phase-space (k, u) for the Insurgentes Sur case is
shown in Figure 8. The least square regression (LSR) was
used to calculate the coefficient of determination (R*) to
determine how strong is the negative exponential relation
(see Equation (6)) between k and u. The relation found was
the following:

k(u) = 394 ¢ /3 (13)
with R? = 0.59. It means that ¢ = 39.04. This value was
utilized in the numerical simulation.

The function of the non-homogeneous continuity
equation for the Insurgentes Sur case is shown in Figure
9. Except in the points where the sign changes, one can
observe that this function is different from zero almost all
the time. This function has more positive than negative

VOLUME 23
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Figure 14 Phase portrait of the density and the velocity for the Mexico-Toluca case

values, which means that more vehicles came out than
those that entered. So, there was a vehicle entry at an
intermediate point on the avenue segment studied.

Velocity’s 3D-graphs are shown in Figure 10 for three
different values of 77. If the viscosity is #7 =100 km h',
there are times and positions when the speed vanishes
(see Figures 10(a) and 12); but if the viscosity is increasing
towards 77 =600 km h! the speed is always positive (see
Figures 10(b) and 10(c)). Velocity increases (until the limit
value) as the viscosity increases. In the Insurgentes Sur
case, # €(0.65) km h' for 7 >10 km h.

It is worth mentioning that the velocity diverges when
the viscosity is small (or zero). Big negative and positive
values of the velocity appear (more than 200 km/h and
close to -800 km h'). This case is numerically unstable. If
the viscosity increases, the method becomes stable and the
negative values disappear.

Figure 11 shows two moments at point 2 of Figure 1, (a)
at 7:26 am and (b) at 9:41 am. An estimated viscosity value
can be made observing each photograph. For example,
a large number of vehicles are seen in Figure 11(a), the
speed is low, so it can be related to Figure 10(a), the
viscosity at that time would have a value 7 =100 km h.
Figure 11(b) shows fewer vehicles than in Figure 11(a);, it
means that the speed has increased along the road segment.
Qualitatively, it can be related to Figure 10(c). In this case,

it would be 7 =600 km h’. These facts are better observed
in Figure 12. Time series of normalized velocity for different
values of 77 at a fixed point x = 500 m show the behavior of
the velocity for the 77 values.

For this position, the velocity is negative if 17 =0; it
decreases to zero if 1 < 77 <100 km h'. Whent =2, u # 0
for 7 =100 km h. From the value ¢ = 1.5 h’}; the speed is
the same for 77 > 200 km h’. The fundamental diagrams are
shown in Figure 13. In all the cases, curves superimposed
on the numerical data show a trend of said data. For the
space phase u - k (Figure 13a), a negative exponential was
assigned. Parabolic curves, whose equations are shown in
the Figure 13, were superimposed on spaces q - k and ¢q - ©
(Figures 13(b) and 13(c) respectively).

5.2 Numerical results for Mexico-Toluca free road

Mexico-Toluca freeway is a 2-lane road for all the kinds
of transport vehicles. The phase-space (k, u) is shown in
Figure 14. The LSR shows thatthe determination coefficient
for this case is R* = 0.57, which is very similar to the
previous case. The negative exponential relation (Equation
(6)) between k and u is:

k(u) = 2552¢ /1% (14)

COMMUNICATIONS 2/2021

VOLUME 23



THE VISCOSITY EFFECT ON VELOCITY OF A MACROSCOPIC VEHICULAR TRAFFIC MODEL

A89

0
07:12:00
-500

08:24:00

-1000

-1500

-2000

f (veh/km/h)

-2500

-3000

-3500

09:36:00 10:48:00

t (h)

Figure 15 Function of the continuity equation for the Mexico-Toluca road

AN

@ Porsche Santa Fe

(]

&

3
Q:
®

La'Gavia 1

Figure 16 Cars are going out of the road to study at an intermediate point, a close-up of Figure 4 is added
to the lower-left corner of the picture to locate the vehicle exit from a map.

It means that ¢ = 15.89. This value was utilized in the
numerical simulation.

Function of the non-homogeneous continuity equation
for the Mexico-Toluca case is shown in Figure 15. One can
observe this function is different from zero all time. In fact,
f takes negative values. One can interpret this result like
more vehicles to come in the road than those that leave the
road. This interpretation is accurate, to many vehicles go
out for the street ahead of point 1 (see Figure 16).

Figure 17 shows velocity 3D-graphs for three different
values of 77. Notably, if the viscosity is small, the velocity
has non-realistic values. Negative velocities can appear in
the model results. Physically, it implies a back movement,
but a car does not move to 1000km h in reverse. This case
is numerically unstable. However, if the viscosity increases,
the velocity takes values ranging from zero to 75km h.

When the viscosity value is 20km h''; the velocity drops to
zero in practically the entire domain of the function (except at

borders, see Figure 17(a)). When the viscosity increases again,
the velocity increases too, but it does not exceed the limits of
values at the boundaries (Figures 17(b) and 17(c)).

Figure 18 shows photographs taken at point 1 of Figure
4 at three different times. Many cars can be seen on the street
in Figure 18 (a). This situation can be related to Figure 17
(b), that is, the viscosity value can be 7 =20 km h'. Figure
18 (b) show fewer cars than Figure 18 (a). Depending on
the particular characteristics of the researchers’ study, in
this case, this picture can be associated with Figure 18 (b),
i. e. the viscosity can take the value 7 =100 km h'. There
are no cars in Figure 18 (c) in the studied lane, so, vehicles
can move at any speed. In this case, the vehicle velocity can
approach the velocity shown in Figure 17 (c).

The normalized velocity (see Figure 19) shows that
several values for viscosity (not necessarily the maximum
values) cause the velocity to drop to zero (for example,
1 =50 km h™).
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Figure 20 Fundamental diagrams for the Mexico-Toluca case, (a) u vs. k with a negative slope straight line trend,
(b) q vs. k with a parabolic trend line, (c) q vs. u with a parabolic trend line

Expected trends in the fundamental diagrams in the
case of the Mexico-Toluca freeway (Figure 20) are less clear
than in the case of the Insurgentes Sur Ave. (Figure 12).

In this case, at the u - k phase-space a line was
inserted with a negative slope as a tendency of the inverse
relationship of « and k, Figure 20(a), instead of the negative
exponential function that was used for the previous case.

A parabolic shape was imposed on the other two-phase
spaces, as one can see in Figures 20(b) and 20(c).

6 Summary

A traffic study in two points of Mexico City is
developed. Velocity, vehicular density, and vehicular flow
were measured for approximately 3 h in sections of around
1km long of two crowded streets. The aim of making these
measurements was to get information on the initial and
boundary conditions to perform the numerical simulation.

To estimate the parameter ¢, which was used as an
input data in the numerical model, an analysis of the
observed data was carried out following the Greenberg
methodology. A qualitatively inverse relationship of u
and k can be observed (Figure 2), as in literature [4, 39].
Nonetheless, this inverse relation is weakly correlated
logarithmically.

Using the usual continuity equation (homogeneous
equation), the model gave a constant value for the speed,
at all the times and for practically the entire spatial domain,
except in the vicinity of the border. Other numerical tests
were made using the Neumann conditions [27-29]. The
velocity was constant (these results are not shown in this
paper), even on the borders.
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