
A80 	 Operat ion and Economics  in  T ranspor t 	 O R I G I N A L  R E S E A R C H  A R T I C L E

©  2 0 2 1  U N I V E R S I T Y  O F  Z I L I N A  	 C O M M U N I C A T I O N S  2 3  ( 2 )  A 8 0 - A 9 3

THE VISCOSITY EFFECT ON VELOCITY OF A MACROSCOPIC 
VEHICULAR TRAFFIC MODEL
Erick Javier Lopez-Sanchez1,*, Norma Yanet Sanchez-Torres2, Patricia Eugenia Olivera Martinez3

1Faculty of Philosophy and Letters, National Autonomous University of Mexico, Coyoacan, Mexico
2Faculty of Sciences, National Autonomous University of Mexico, Coyoacan, Mexico
3Critical Urban Studies Seminar, Geography Department, Faculty of Philosophy and Letters, National Autonomous 
University of Mexico, Coyoacan, Mexico

*E-mail of corresponding author: lsej@ciencias.unam.mx

Resume
Traffic in Mexico City poses a serious problem of vehicle saturation that causes 
a  decrease in speed and increased transport time in the streets that suffer 
mobility collapses. A macroscopic model of vehicular traffic is used to show the 
effect of viscosity on the vehicular variables (speed and vehicle density), applied 
to two avenues in Mexico City, is studied. The input parameters were calculated 
following the Greenberg model. As the original model presents numerical 
divergences, the two assumptions corresponding to conservation of the vehicle’s 
mass and the viscous term are modified. The results suggest that the viscosity 
depends on time and that it can be adapted to recommend modifications in 
urban mobility parameters, or even to implement the public planning policies 
in construction of infrastructure for urban transport, to make vehicle flow more 
efficient.
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which they relate the vehicular speed and the density of 
the traffic.

Vehicular traffic models have been developed since 
1935. From measured data of speed, vehicular flow and 
vehicular density using a  16 mm simplex movie camera 
to take pictures and an electric motor driven by an 
automobile storage battery operated the camera with 
a constant time interval between exposures, Greenshields 
[1] deduced one of the first traffic models. Later, Lighthill 
and Whitman [2] and Richards [3] built their model based 
on the advection equation. Macroscopic traffic models were 
made based on the Navier-Stokes and continuity equations, 
for example, the Greenberg model [4], Newell model [5], 
Paveri-Fontana model [6], Helbing model [7], among others 
[8-16]. A genealogy of traffic models has been described by 
van Wageningen-Kessels et al. [17].

Most of these models are validated in segments of 
streets or avenues in which they do not have intermediate 
entries or exits of vehicles, i. e. the number of cars that 
enter from one side of the road, is the same as the one 
that leaves from the other side. In that sense, there is 
a  conservation of mass. However, most vehicular roads 
do  not have that property. Some streets end in avenues, 
while there are streets that interconnect with other ones. In 
this aspect, there is no necessarily a mass conservation. For 
instance, the Greenberg model is based on the fundamental 
equations of fluid mechanics, assuming that the vehicle 

1 	 Introduction

Transport is a  part of the urbanization process 
produced within a  host of intentions, such as real estate, 
residential developments, productive location and points 
of commerce in its various formats. The transport is 
implicit to any of them and together they continually 
reorganize the urban spaces, forming and destroying 
networks of exchange of these activities. The transport role 
is very significant for organization of urban spatiality since 
transport systems in large metropolises are essential for 
labor and student mobility, circulation of goods, delivery 
of services, and many other reasons in the productive and 
social spheres. According to the differential intensities 
of local, intrametropolitan, and even regional scales, the 
transport saturation derived from vehicular flows and 
vehicular densities generates frequent problems of mobility.

Time plays a critical role, jointly mobility is associated 
with transport efficiency. The traffic volume also responds 
to a  group of elements, such as increases in population 
density, structure of the hierarchical road map, routes 
of means of transport and their connectivity, mass of 
circulating vehicles and the transport hubs that are 
configured in the metropolis by the origin-destination 
concentrations. Vehicular traffic is studied over the world 
because of increase of the mobility generalized problems. 
Most of the studies are centered in the vehicular flow, in 
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The work is organized as follows. The data collection 
methodology is shown in section 3. The modified traffic 
model is presented in a general way in section 2. The places 
of observation and data collection in Mexico City, as well 
as the data analysis, are shown in section 4. Section 3.2 
contains the numerical method used to solve the system 
of partial differential equations of the traffic model and 
the numerical results are presented in section 5. Finally, 
a summary is presented in section 6.

2	 Theoretical framework

2.1	 The Greenberg model

Greenberg built his model from the one-dimensional 
motion of a fluid equation [30]: 

Dt
Du

k
c
x
k2

2
2=- ,	 (1)

where u: traffic velocity, km per hour, k: density of traffic, 
vehicles per km; x: distance along the road, t: time, c: 
a parameter that is determined from the state of the fluid 
and / / /D Dt t u x2 2 2 2= +  is the material derivative.

The continuity equation is written as: 
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Here q = u k is the traffic flow [vehicles per hour], it 
represents the flow rate in fluids. All of them are functions 
of the position x and the time t: 

, , ,q x t u x t k x t=^ ^ ^h h h .	 (3)

The Greenberg’s model [4] has a significant assumption, 
which is demonstrated that it was not always satisfied. That 
supposition is the velocity depends on the density u = u(k), 
and then the system Equations (1) and (2) becomes the 
following equation1: 

dk
du

k
c=- .	 (4)

The solution of Equation (4) is 

lnu k c
k
k jam

=^ ch m ,	 (5)

where k jam  is the density for the traffic jam (u = 0). That 
means the density as a function of the velocity has the form: 

k u k e /u c
0= -^ h .	 (6)

2.2	 Viscosity in the traffic

Equation (1) contains terms that are interpreted as 
actions concerning drivers: the nonlinear term ( /u u x2 2 ) 
is the convection and it represents changes of the average 

1 see [4] for details.

flow is compressible. Greenberg’s data match with his 
model because they referred to the extreme sides of the 
Lincoln tunnel under the Hudson River, which divides New 
Jersey from New York. In this place, there is no possibility 
of an intersecting street. Greenberg proposes that speed is 
a function of vehicle density, which simplifies the equations 
for the analytical solution.

On the other hand, vehicular traffic in Mexico City 
entails serious challenges due to saturation, conflicting 
nodes, intermittent connectivity, because the transport 
demand is greater than the transport offer and the growing 
vehicle park, all of them causing the drop-in velocity. 
Because of the traffic saturation, travel time increases 
gradually. According to travel costs, collective public 
transport does not raise tariffs, but private transport 
expenditures augment, as well for transport companies. 

In the Metropolitan Area of Mexico City (ZMCM) in 
2017, there were 34,558,217 trips per day, within the urban 
area of 214,791 hectares [18]. In 1994 there were 20,573,700 
trips per day [19], that is, these increased by more than 
608,000 trips per year. In Mexico City, the average travel 
distance is 20.9 km. The mean speed of all the kinds of 
transport has fallen from 38.5 km h-1 in 1990 to 13.8 km 
h-1 in 2017 [20]. The average speed of a  bus is 8.8 km h-1, 
the mean velocity in the metro is 21.1 km h-1, in express 
transport (Metrobus) is 13.9 km h-1. The average travel 
time is 90.6 minutes and it continues to increase [21]. The 
vehicular speed between the origin and destination points 
are decreasing slowly [22].

The problems that aggravate the road congestion in 
the ZMCM are associated with the growing private fleet. In 
2017 it reached more than 6 million vehicles [18], the private 
only mobilize 30% of total trips, and the concessional has 
a low capacity of transportation [21]. The urban layout and 
the continuity of the primary roads are interrupted because 
of the conurbation of more than 145 native towns. With 
immigrants from the whole country, these old towns grew 
rapidly conserving a very narrow road network.

In this paper, a  modified Greenberg model is used, 
which considers the loss or gain of vehicular mass in the 
selected road segment with intermediate inputs and outputs 
[23-25], and the viscosity term to the motion equation, to 
simulate the traffic variables in two cases. The viscosity is 
interpreted as the high-grade driver anticipation [26].

The model is solved completely using a  numerical 
method. The initial and boundary conditions (Dirichlet 
conditions [27-29]) of the traffic model are measured data 
about speed, vehicular density and vehicular flow that 
has been taken at peak hours, registered for 3 hours in 
a working day in two roads of Mexico City. 

The objective of this work was to study the effect 
of viscosity on the traffic variables by simulating with 
a  modified Greenberg model, using measured data of the 
traffic variables as the initial and boundary conditions. 
Simulations are carried out to observe behavior of the 
traffic variables in the entire domain when the viscosity 
varies. The viscosity is important because it can relate to 
urban mobility parameters.
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points among the measured data (where no measurements 
were taken), a cubic spline interpolation was carried out with 
each variable. The interpolated data were entered as input 
values in the model. Thus, the known values of the variables 
at the borders (Dirichlet conditions [27-29]) were obtained.

The model is solved by the finite difference method in 
combination with an iterative method [32-33]. The details 
are shown in section 3.2.

3.2	 Numerical method

The system of the Equations (8)-(9) was solved 
numerically using the second-order finite differences 
method, backward for time and centered for position. 
The method convergence was evaluated increasing the 
number of mesh points. The mesh refinement finished 
when the solution was practically the same between the 
two consecutive refinements. The initial and boundary 
conditions were taken from the measured data. There 
was no assumption that velocity depends on density, as 
Greenberg did it (see section 2), the system of Equations 
(8)-(9) was solved as a  whole. The solutions convergence 
was verified through the Courant number, defined as [24, 34]: 

Co u x
t
T
T= .	 (11)

If this non-dimensional number is lower than 1, then 
the solution converges.

The functions k(0, t), k(l, t),u(0, t) and u(l, t) (where l 
is the end of the line) were measured in discrete values, and 
f(t) was calculated with those discrete values (see section 
5). Then, all these functions have discrete domains. The 
cubic spline method was used to calculate the intermediate 
points and matching with the numerical meshes.

The numerical code was written in Matlab-script.

4	 Observational traffic data 

The observational data were obtained at two places 
in Mexico City, in a major avenue: Insurgentes at South of 
the city and Mexico-Toluca freeway atn the western city 
entrance. These ways were chosen because they had a few 
lateral inners and exits, so that the function f should be very 
close to zero, but this was not quite possible.

4.1	 Insurgentes Sur Ave

Figure 1 shows the first road section of the collected 
traffic data. This record was made on November 21, 2018. 
The variables u(x, t), k(x, t) and q(x, t) were taken for three 
and a half hours at two points. An observer was collocated 
in a pedestrian bridge at South (point 1), and the other one 
was placed on a pedestrian bridge at the North (point 2).

The measured flow’s direction is South-North, so the 
input is at 1 and the output is at 2. The measurements were 

speed in a  very small cell due to vehicles entering with 
different speeds; the pressure term /c k k x2 12 2-^ h  is the 
anticipation, that is, changes in speed due to anticipation 
of drivers in traffic conditions later on [26]. In this case, the 
pressure is directly proportional to the density P c k2=^ h , 
 since the vehicular flow is assumed to be an ideal gas [24]. 
In this work, the viscous term is added as a  pressure for 
which the speed changes with respect to the position: 

P c k x
u2

2
2h= - .	 (7)

The viscosity term in the acceleration equation is 
represented by the diffusive term in the traffic system. 
The speed diffusion is useful to improve the numerical 
properties of a model. Besides that, it helps to investigate 
the effects of numerical diffusion, which are unavoidable 
when numerically integrating macroscopic models [31]. The 
modified Greenberg model is: 
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where h  is the viscosity [km h-1] and f(t) must be proposed, 
estimated, or measured from the observational data. 

The viscosity term can represent the driver’s 
anticipation against any event [26]. If vd  is the visibility 
distance (the distance at which the driver detects the 
eventuality: a person crossing the street, a bottleneck, a car 
slowing down, etc.) and ax  the anticipation time, i.e. the 
time that the driver takes to prevent a crash, then one can 
define the viscosity as: 

a

vh x
d

= .	 (10)

3	 Methodology

3.1	 Data collection

Once the observation points are chosen, the traffic 
variables involved in the model are measured, namely, 
speed u, density k and capacity q. The speed is measured 
by fixing the two points on the road and observing the time 
that the vehicles spend to travel the distance between them. 
Subsequently, the distance between these two points is 
measured. With this, the average speed is calculated.

To measure the flow rate, vehicles passing through 
a fixed point in the road for one minute were counted. The 
number of vehicles per hour is estimated by multiplying the 
quantity measured by 60.

The density was measured by counting the number of 
vehicles in the segment between the points that were set 
to measure the speed. Thus, the number of vehicles per 
unit of distance was obtained. With a  simple proportional 
relationship, the number of vehicles per km is determined.

These measurements were made every 10 min for 
approximately 3 h. To obtain an estimate of the intermediate 
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Greenberg’s prediction says. One also can compare the 
measured traffic flow Qmeasuredr  and the calculated traffic 
flow Q k ucalculated measured measured#=r r r , where the bar means 
“the average of.” Even though the slope of the straight line 
is close to 1, the linear regression shows a weak correlation 
between Qmeasuredr  and Qcalculatedr  (R2 = 0.28 Figure 3).

made from 6:40 hrs to 10:20 h. One can see that there is a big 
vehicle exit-entrance at 350 m from 1 and another small 
vehicle’s entry at 200 m from 1. In this case, x 1T .  km and 
t 10T =  min, i. e. /t 1 6T =  h.

One can see in Figure 2 that the density and velocity 
of traffic have a  qualitatively opposite behavior, as 

Figure 1 Insurgentes Sur, Mexico City, taken from Google Earth Pro 2018

Figure 2 (a) Density of traffic at point 1, (b) Density of traffic at point 2, (c) Velocity of traffic at point 1,  
(d) Velocity of traffic at point 2, see Figure 1



A84 	 L O P E Z - S A N C H E Z  e t  a l .

C O M M U N I C A T I O N S    2 / 2 0 2 1 	 V O L U M E  2 3

Figure 3 Relation between the calculated traffic flow and the measured traffic flow  
for the Insurgentes Sur case

Figure 4 Mexico-Toluca Federal road, Mexico City, taken from Google Earth Pro 2018

Figure 5 (a) Density of traffic at point 1, (b) Density of traffic at point 2, (c) Velocity of traffic at point 1,  
(d) Velocity of traffic at point 2
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flow Qcalculatedr  (see Figure 6). In this case, the slope of the 
straight line is greater than 2, besides the linear regression 
shows a weak correlation between Qmeasuredr  and Qcalculatedr  
(R2 = 0.32).

5 	 Numerical results

Numerical results are presented as the three-
dimensional graphs of variables u(x, t) and k(x, t). In 
addition, a  time series of those variables are shown in 
two-dimensional graphs, which are presented at different 
values of fixed positions. Finally, the space-phase (known 
as “fundamental diagram” [17, 31, 35-36]) is presented 
for combinations of the three variables: u, k and q. The 
calculations were carried out varying the parameter h , 
which took the values: 

4.2	 Mexico-Toluca free road

Figure 4 shows the second road section of the traffic 
data collection. This record was made on November 13, 
2018. The variables u(x, t), k(x, t) and q(x, t) were taken 
for three hours at two points. An observer was placed on 
a pedestrian bridge at West (point 1) and the other was put 
in a pedestrian bridge at East (point 2).

The measured flow’s direction is West-East, so the 
input is 1 and the output is 2. The measures were taken 
from 7:30 h to 10:30 h. One can observe that there is 
an important vehicle exit at 250 m from 1. In this case, 

.x 0 8T . km and /t 1 6T =  h. 
In Figure 5, one can see a contrary behavior of density 

and velocity too, but it is not as evident as in Figure 2. In the 
same way as in the Insurgentes Sur case, one can compare 
the measured traffic flow Qmeasuredr  and the calculated traffic 

Table 1 Some combinations of anticipation distance, time and viscosity (Equation (10))

vd  (m) ax  (s) h  (km h-1)

250 1.5 600

500 4 450

290 2.75 380

210 3.4 220

100 3.6 100

50 9 20

Figure 6 Relation between the calculated traffic flow and the measured  
traffic flow for the Mexico-Toluca case

Figure 7 Courant number, h=600 km h-1, (a) for the Insurgentes Sur case, (b) for the Mexico-Toluca case
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Function f of the non-homogeneous continuity equation 
(Equation (9)) was calculated as follow: 

f t t
k

x
q

T
T

T
T

. +^ h ,	 (12)

with k k t k t2 1T = -^ ^h h  and t tq q q2 1T = -^ ^h h  (see 
Figures 1 and 4).

5.1 	Numerical results for Insurgentes Sur Avenue

Insurgentes Sur is a  2-lane road for private vehicles 
and one lane confined to public transport service. If one 
estimates the number of vehicles in the case of traffic jams, 

, , , , , , , , , ,0 1 5 10 20 50 100 220 380 450 600!h " , km h-1.
These values were defined based on the Kerner-

Konhauser fundamental diagram [37-38], who have reported 
the value of 600h=  km h-1. 

Table 1 shows several combinations of the visibility 
distance and the anticipation time to get various values of 
the viscosity.

To see the convergence of the solutions, the behavior 
of the Courant number in terms of time is shown in Figure 
7. In Figure 7(a), the Courant number is greater than 1 only 
at the beginning, but its values become lower than 1 for the 
rest of the time. In the Mexico Toluca case (see Figure 7(a)), 
the Courant number is always lower than 1 all the time, 
therefore the numerical method is stable in both cases.

Figure 8 Phase portrait of the density and the velocity for the Insurgentes Sur case

Figure 9 Function of the continuity equation for the Insurgentes Sur Ave

Figure 10 Velocity as a function of x and t for the Insurgentes Sur case,  
(a) h=100 km h-1, (b) h=220 km h-1, (c) h=600 km h-1
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k u e394 / .u 39 04= -^ h ,	 (13)

with R2 = 0.59. It means that c = 39.04. This value was 
utilized in the numerical simulation.

The function of the non-homogeneous continuity 
equation for the Insurgentes Sur case is shown in Figure 
9. Except in the points where the sign changes, one can 
observe that this function is different from zero almost all 
the time. This function has more positive than negative 

there is a  maximum of 750 veh km-1 (taking into account 
vehicles of 4 m in length and without a  space between 
them).

The phase-space (k, u) for the Insurgentes Sur case is 
shown in Figure 8. The least square regression (LSR) was 
used to calculate the coefficient of determination (R2) to 
determine how strong is the negative exponential relation 
(see Equation (6)) between k and u. The relation found was 
the following: 

Figure 11 Insurgentes Sur, picture taken at point 2 of Figure 1, (a) at 7:26 am, (b) at 9:41 am.

   
Figure 12 Normalized velocity time series for several values o 

f the h  at the fixed point x = 500 m, Insurgentes Sur case
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it would be h=600 km h-1. These facts are better observed 
in Figure 12. Time series of normalized velocity for different 
values of h  at a fixed point x = 500 m show the behavior of 
the velocity for the h  values.

For this position, the velocity is negative if h=0; it 
decreases to zero if 1 ≤ h  ≤ 100 km h-1. When t = 2, u 0!  
for h=100 km h-1. From the value t = 1.5 h-1, the speed is 
the same for h  > 200 km h-1. The fundamental diagrams are 
shown in Figure 13. In all the cases, curves superimposed 
on the numerical data show a  trend of said data. For the 
space phase u - k (Figure 13a), a negative exponential was 
assigned. Parabolic curves, whose equations are shown in 
the Figure 13, were superimposed on spaces q - k and q - u 
(Figures 13(b) and 13(c) respectively).

5.2 	Numerical results for Mexico-Toluca free road

Mexico-Toluca freeway is a 2-lane road for all the kinds 
of transport vehicles. The phase-space (k, u) is shown in 
Figure 14. The LSR shows thatthe determination coefficient 
for this case is R2 = 0.57, which is very similar to the 
previous case. The negative exponential relation (Equation 
(6)) between k and u is: 

k u e2552 / .u 15 89= -^ h .	 (14)

values, which means that more vehicles came out than 
those that entered. So, there was a  vehicle entry at an 
intermediate point on the avenue segment studied.

Velocity’s 3D-graphs are shown in Figure 10 for three 
different values of h . If the viscosity is h=100 km h-1, 
there are times and positions when the speed vanishes 
(see Figures 10(a) and 12); but if the viscosity is increasing 
towards h=600 km h-1 the speed is always positive (see 
Figures 10(b) and 10(c)). Velocity increases (until the limit 
value) as the viscosity increases. In the Insurgentes Sur 
case, .u 0 65! ^ h  km h-1 for h >10 km h-1.

It is worth mentioning that the velocity diverges when 
the viscosity is small (or zero). Big negative and positive 
values of the velocity appear (more than 200 km/h and 
close to -800  km h-1). This case is numerically unstable. If 
the viscosity increases, the method becomes stable and the 
negative values disappear.

Figure 11 shows two moments at point 2 of Figure 1, (a) 
at 7:26 am and (b) at 9:41 am. An estimated viscosity value 
can be made observing each photograph. For example, 
a  large number of vehicles are seen in Figure 11(a), the 
speed is low, so it can be related to Figure 10(a), the 
viscosity at that time would have a value h=100 km h-1. 
Figure 11(b) shows fewer vehicles than in Figure 11(a);, it 
means that the speed has increased along the road segment. 
Qualitatively, it can be related to Figure 10(c). In this case, 

Figure 13 Fundamental diagrams for the Insurgentes Sur case, (a) u vs. k with a negative exponential trend line,  
(b) q vs. k with a parabolic trend line, (c) q vs. u with a parabolic trend line

Figure 14 Phase portrait of the density and the velocity for the Mexico-Toluca case



T H E  V I S C O S I T Y  E F F E C T  O N  V E L O C I T Y  O F  A   M A C R O S C O P I C  V E H I C U L A R  T R A F F I C  M O D E L 	  A89

V O L U M E  2 3 	 C O M M U N I C A T I O N S    2 / 2 0 2 1

borders, see Figure 17(a)). When the viscosity increases again, 
the velocity increases too, but it does not exceed the limits of 
values at the boundaries (Figures 17(b) and 17(c)).

Figure 18 shows photographs taken at point 1 of Figure 
4 at three different times. Many cars can be seen on the street 
in Figure 18 (a). This situation can be related to Figure 17 
(b), that is, the viscosity value can be h=20 km h-1. Figure 
18 (b) show fewer cars than Figure 18 (a). Depending on 
the particular characteristics of the researchers’ study, in 
this case, this picture can be associated with Figure 18 (b), 
i. e. the viscosity can take the value h=100 km h-1. There 
are no cars in Figure 18 (c) in the studied lane, so, vehicles 
can move at any speed. In this case, the vehicle velocity can 
approach the velocity shown in Figure 17 (c).

The normalized velocity (see Figure 19) shows that 
several values for viscosity (not necessarily the maximum 
values) cause the velocity to drop to zero (for example, 
h=50 km h-1). 

It means that c = 15.89. This value was utilized in the 
numerical simulation.

Function of the non-homogeneous continuity equation 
for the Mexico-Toluca case is shown in Figure 15. One can 
observe this function is different from zero all time. In fact, 
f takes negative values. One can interpret this result like 
more vehicles to come in the road than those that leave the 
road. This interpretation is accurate, to many vehicles go 
out for the street ahead of point 1 (see Figure 16).

Figure 17 shows velocity 3D-graphs for three different 
values of h . Notably, if the viscosity is small, the velocity 
has non-realistic values. Negative velocities can appear in 
the model results. Physically, it implies a back movement, 
but a car does not move to 1000 km h-1 in reverse. This case 
is numerically unstable. However, if the viscosity increases, 
the velocity takes values ranging from zero to 75 km h-1.

When the viscosity value is 20 km h-1, the velocity drops to 
zero in practically the entire domain of the function (except at 

Figure 15 Function of the continuity equation for the Mexico-Toluca road

Figure 16 Cars are going out of the road to study at an intermediate point, a close-up of Figure 4 is added  
to the lower-left corner of the picture to locate the vehicle exit from a map. 
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Figure 17 Velocity as a function of x and t for the Mexico-Toluca case, (a) h=20 km h-1, (b) h=100 km h-1,  
(c) h=600 km h-1

Figure 18 Mexico-Toluca, picture taken at point 1 of Figure 4, (a) at 8:32 am, (b) at 9:17 am,  
(c) at 10:32 am, ictures: Authors

Figure 19 Normalized velocity time series for several values of the h , Mexico-Toluca case
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The solutions of the inviscid model (or with small 
values of the viscosity) are numerically unstable. Non-
realistic values for vehicular density and speed are obtained. 
The solution gets expected values if the viscosity increases. 
The diffusion term ( i. e. the viscosity term) added to the 
motion equation makes the model to become stable [31], 
that is, the solutions take realistic or expected values.

Although the correlation between k
measured

 and u
measured

 
is weak, the numerical results show expected values for 
k and u. The phase-space or fundamental diagrams have 
expected trends.

The Courant number (see Figure 7) is less than 1 
over all the solution integration’s time. Thus, there is 
a convergence of the solution.

In the cases studied here, the viscosity value 
depends on the traffic time. The viscous term can be 
useful to define changes in the road parameters such 
as speed limits, reversible lanes, etc. to improve urban 
mobility.

One still needs to consider the effect of traffic lights, 
bottlenecks and block outs. In the future work, authors will 
consider the solution behavior of a  fractional Greenberg 
model, which also has the effect of slowing down and with 
this, impairing in mobility. 
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Expected trends in the fundamental diagrams in the 
case of the Mexico-Toluca freeway (Figure 20) are less clear 
than in the case of the Insurgentes Sur Ave. (Figure 12).

In this case, at the u - k phase-space a  line was 
inserted with a negative slope as a tendency of the inverse 
relationship of u and k, Figure 20(a), instead of the negative 
exponential function that was used for the previous case.

A parabolic shape was imposed on the other two-phase 
spaces, as one can see in Figures 20(b) and 20(c).

6 	 Summary

A  traffic study in two points of Mexico City is 
developed. Velocity, vehicular density, and vehicular flow 
were measured for approximately 3 h in sections of around 
1km long of two crowded streets. The aim of making these 
measurements was to get information on the initial and 
boundary conditions to perform the numerical simulation.

To estimate the parameter c, which was used as an 
input data in the numerical model, an analysis of the 
observed data was carried out following the Greenberg 
methodology. A  qualitatively inverse relationship of u 
and k can be observed (Figure 2), as in literature [4, 39]. 
Nonetheless, this inverse relation is weakly correlated 
logarithmically.

Using the usual continuity equation (homogeneous 
equation), the model gave a constant value for the speed, 
at all the times and for practically the entire spatial domain, 
except in the vicinity of the border. Other numerical tests 
were made using the Neumann conditions [27-29]. The 
velocity was constant (these results are not shown in this 
paper), even on the borders.

Figure 20 Fundamental diagrams for the Mexico-Toluca case, (a) u vs. k with a negative slope straight line trend,  
(b) q vs. k with a parabolic trend line, (c) q vs. u with a parabolic trend line
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