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Resume

The study examines the question of the tunnel behavior under seismic or
geophysical load in the zone of changes in the hardness of the surrounding
soil mass. In the course of the study, the internal forces and displacements
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arising in the structure of a tunnel in the zone of intersection of the

boundaries of soil layers with different properties, in the case when these
layers move relative to each other, were determined by analytical and
numerical solutions. The data obtained by the analytical method was
compared to numerical models using practical examples.
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1 Introduction

During an earthquake, soil layers with different
properties often move in different ways. Tunnels that
cross such borders may be damaged [1-2]. Tunnels
located in soft ground can be considered as beams
in an elastic medium (or considered as beams on an
elastic foundation), Figure 1. As a rule, faults are
usually the boundaries of soil layers with different
engineering and geological characteristics. This study
examines the stress-strain state of the tunnel lining
that crosses the fault zone of two soil blocks [3]. At this
stage of calculation, the goal is to obtain analytical
and numerical solutions and then compare them. The
initial data are parameters of the lining cross-section,
characteristics of the soil and value of the relative
displacement of the soil layers [5].

2 The fault is perpendicular to the tunnel axis
2.1 Analytical method

Differential equation of the bending beam, (Figure

The well-known solution of Equation (1) has the
form:

y=e P(CicosBx + CssinBx) +

2
+ P (Cscos Bx + CusinBx) + vo(q), ®

where = %b[x , here & is a coefficient of the
subgrade reaction, b is the width of a beam, E is Young
modulus, I is a moment of inertia.

In this case, the deformed view is as in Figure 3.

For simplifying the solution, the model of the semi-
infinite beam on an elastic foundation is used (Figure
4), when 0<x=<oco. In this case, if x— c0,¢* - 0,
there is no physical meaning, so C,— C, — 0. In addition,
from initial data follows that g - 0.

In view of the above, Equation (2) will take a form:

y=e P(CicosBx + Cssinfx). 3)

To define the integration constants C, and C,, one
has to twice take the derivative of a function in Equation
(3). Below is the sequence of actions for this operation.

vy = Cie PcosfBx + Cre #sinBx
y = Ci(e P cosBx) + Co(e Psinfx)

2) [7-8], is: : W
1.(e PcosPx) = — Be P cosPx +

ElL Z;j‘: +tkby=gq. 1 T Be P(—sinpx) = Be #*(— cosPfx — sinfx)
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Figure 1 Scheme of a tunnel throw fault fracture zone
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Figure 2 Classical beam on elastic foundation using the Winkler assumption

Figure 3 Deformed view of the calculation scheme
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Figure 4 Accepted calculation scheme
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2.(e PsinBx) = — e Prsin Bx +
+ Be P cos Bx = Be P*(—sin Bx + cosBx)

4
¥ = Ci[Be P*(— cos Bx — sin fx)] + 4
+ Co[ Be P*(— sin Bx + cos Bx)].
v = Cip| —e P cosBx — e Psin Bx| +
+ CoBle Picos fx — e Prsin fa|
, — Be P*(— cos Bx — sinBx) —
=C
g 1ﬁ[— ¢ (—sin Bx + cos )
Be P*(— cos fx — sinBx) —
+C
P — Be #*(—sin Bx + cos Bx)
_5.|(cos Bx + sin Bx) —
L 2 PBx
Y Cpe — (sin Bx + cos Bx)
L CBe P (— cosBx — sinBx) — 5)
e —(—sinBx + cosfBx)
, 2 pe cos Bx + sin Bx +
V=GR +sinBx — cos Bx
20 — cos Bx + sin Bx +
e + sin Bx — cos Bx)

v = Cif%e P+ 2sinBx — C2%e P+ 2cos Bx
y" = 2% P*(CysinBx — Czcos Bx).

If the properties of the neighboring ground-blocks
and bending stiffness of the tunnel lining are constant,
for right-hand part of an infinite beam the following
boundary conditions can be used [9]:

(6)

When x = 0, the tangent angle takes the extreme
value, the second derivative should be equal to zero,
whence follows v" = (0) = 0> M(0) = 0.

Substituting the boundary conditions in Equations
(6), (3) and (5) gives:

C #() +
1._’)/”(0):%: %:e '3,,0< lCOSﬁ )

+ CesinB =0
- _A
=>(C = PE )
o[ CisinB=0—
2.9"(0)=0: 0 =28" ﬁ*°< ):
v'(0) pe — Cycos B0
:>szo.

Taking into the constants found, Equation (3) takes
the form:

y = %e’ﬁx cos fBx. 8)

Using the well-known dependencies between the
internal force factors (bending moment M and shear
force Q) and a deflection function, one can get equations:

% =—y = —Zﬁze’ﬁx%sinﬁx;

9
M = — EIAB*e P sin B,
% =—y" =—AB*(e Psinfx) =
— AB? Be P*(—sin Bx + cos Bx)]; (10)

Q = EIAB*e P*(cosBx — sin Bx).

The presence of ¢ # multiplier in equations
indicates that all these functions decrease with increasing
distance from the block border (x — co,e” # —0). One

J,3

A

Figure 5 Cross-section area of the tunnel lining
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Figure 6 Part of the finite-element model of a beam on elastic foundation

can assess the zone of influence by function e #. If
x=0,e ' =1

If Bx=me "= 0.043 and with an accuracy of
5% one can say that it equals to zero. In this case, from
Bline = 7 follows:

m=%. (11)

2.2 Example

As an example, the stress-strain state of the
tunnel lining (Figure 5) is considered for the beam
element. Parameters of concrete are: Young modulus
E = 35500 Mpa , Poisson ratio v = 0.2.

The vertical deflection of left-hand part is
A = 0.01m . The results were obtained by Excel and
presented below (comparing the analytical solution to
the numerical simulation’s one).

2.3 Numerical simulation

2.3.1 Model of a Winkler’s beam on elastic
foundation

An analytical solution, using a mathematical model
of a beam on elastic foundation, allows to quickly and
easily assess the inertial forces factors in the tunnel
lining from the displacement of blocks along the fault
boundary; however that is not a universal solution.
Numerical modeling helps to solve this problem. First,
the numerical finite element model was created in the
MIDAS GTS NX software, based on the calculation
scheme of a Winkler beam on an elastic foundation
(Figure 2). The beam nodes are connected to the
ground by elastic springs with a step of 1m, the spring
stiffness corresponds to the stiffness of the ground
foundation. The length of the simulated tunnel section
is 200 meters. The external impact is set as a 0.0lm
upward shift of the left block. The model is shown
in Figure 6.

2.3.2 Model with the 2D plane strain elements.

The next step in verifying the proposed calculation
method is to create a 2D model.

The tunnel lining is modeled by beam finite
elements, a concrete is considered as the isotropic
elastic material, using parameters like for a model of
beam on an elastic foundation. The area of analysis is
200 x 40m. The surrounding ground mass is modeled
by the 2D plane stain elements, using Mohr-Coulomb
model with parameters: silty clay, Young modulus
E = 3700 kPa, Poisson ratio v = 0.3, friction angle
¢ = 18.4°, cohesion ¢ = 33.8 kPa. A friction was modeled
like an interface elements with strength reduction factor
R, =0.5. This model is shown in Figure 7.

For the integrity of the analysis, the model of
a beam on an elastic foundation was used, as well. In
this case, one needs to use the coefficient of a subgrade
reaction &.

Based on an elastic theory, Scott [6] derived the
relation between the coefficient of subgrade reaction and
a Young modulus, as follow:

L

k:d(l—vz)’

12)
where d is a diameter of a pile.

For the presented method, it is acceptable to take d
as the tunnel diameter. In this case, for the silty clay the
coefficient is & = 6777 kN /m?>.

For the convenience of estimating the stress-strain
state in each model, the graphs for each case are
presented in Figure 8.

2.4 Practical application
2.4.1 The 1D scheme

Using the numerical simulation model, a study of
the changing inertial forces factors was carried with
different stiffness of mountain blocks (Figure 9). Getting
analytical results is a difficult procedure in solving
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Figure 7 Model with the 2D plane strain elements
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Figure 8 Results for the silty clay subgrade. Diagram of displacement (a), shear forces (b) and the bending moments (c)
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tunnel
lining

Figure 9 Using different coefficients subgrade reaction

such problems, because due to different stiffness of the
rock blocks, the deformation and stress plots are not
symmetrical.
The stiffness of the first block is characterized by
a coefficient of subgrade reaction %, the stiffness of
the second block by &, and the filling space “z” between
blocks by k&, [9-10].
a) An effect of the distance z on internal forces in the
tunnel lining
Consider the following additional initial data:
k, = 40000 kN/m? k, = 0.2k, = 8000 kN/m?
k, =k, = 40000 kN /m?
The distance z varies from 10 to 100 meters. The
results are presented in Figure 10.
b) An effect of the value k&, on internal forces in the
tunnel lining
In this case consider the following additional initial
data:
k,=8000 kN /m?, k,= 10k, = 80000 kN /m? z = 40 m.
The coefficient k, takes values from 8000 to 8000
kN/m? The results are presented in Figure 11. The
most interesting is that with increase in the subgrade
reaction coefficient, internal force factors increase too
and the displacement diagram has t changed slightly.

2.4.2 The 2D scheme

Using this approach, similar operations were
performed with the 2D scheme. For connection of the soil

models of the 1D and 2D schemes, the Scott Equation
(12) is used.
a) An effect of the distance z on internal forces in the
tunnel lining
Consider the following additional initial data:
E = 218400 kN/m? E, = 0.2E, = 43680 kN/m?
E, =E, = 218400 kN /m?
The distance z varies from 10 to 100 meters. The
results are presented in Figure 12.
b) An effect of the value &, on internal forces in the
tunnel lining
In this case consider the following additional initial
data:
E =43680 kN/m?* E,=10E, = 43680 kN/m?, z=40m.
E, takes values from 43680 to 436800 kN/m?* The
results are presented in Figure 13.

3 The fault is along to the tunnel axis
3.1 Analytical method

Consider a tunnel with length 2L, external diameter
d, and with compressive (or tensile) stiffness EA.
Using the Winkler model to describe the interaction
of the surrounding soil mass and the tunnel structure,
the coefficient of elastic resistance at the shift k is
introduced (Figure 14).

The movement of the tunnel cross-sections w along
the x axis is described by the following differential

COMMUNICATIONS 1/2022
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equation [5]: characteristics was adopted: A = 5.372 m?, d = 6 m.
o Coefficient % is adopted as a quarter of the normal
EA il wtdksw = 0. (13)  coefficient of subgrade reaction. For silty clay: £ = 2000
kN /m2.
For the ease of calculation, consider the right-hand
3.2 Example cut-off part in accordance with the methods of strength
of materials (Figure 15).
For example, a tunnel lining with the above The well-known differential relationship between
Y,m DISPLACEMENT
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(c)

Figure 10 Diagram of displacement (a), shear forces(b) and bending moments(c) in terms of z (1D scheme)
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the force and the deflection is:
N. = ndk;w = 1687 kN . (15)

2
EA ‘fixl;’ = N.. (14)

Obviously, the force at the ends of the tunnel is
Given Equation (13) and the equilibrium equation equal to zero. Then, one can plot the diagram internal

for the right-hand cut-off part, one gets: forces Nz.
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Figure 11 Diagram of displacement (a), shear forces(b) and bending moments (c) in terms of k2 (1D scheme)
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Figure 12 Diagram of displacement (a), shear forces (b) and bending moments (c) in terms of z (2D scheme)

3.3 Numerical simulation

For comparing the results, the previously presented
models of the tunnel as beams on an elastic base with
springs (1D) and model with ground given as plane
strain elements (2D) are used.

Using these models, with a difference only in
the direction of the applied load (the horizontal
direction instead of the vertical one). Friction was
modeled like an interface elements with strength
reduction factor B, = 0.5. The results are presented
in Figure 16.

4 Simultaneous action of the fault
perpendicular and along the tunnel axis

Using the introduced calculation schemes, it is
possible to consider the problem combine stress-strain
state of the tunnel lining (Figure 17). For clarity the 1D
and 2D schemes were compare, the obtained results are
presented in Figure 18.

Initial data:

*  For the 1D scheme:
= 40000 kN/m? k

k, = 0.2k, = 8000 kN/m?
k, = k, = 40000 kN /m?

2
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Figure 13 Diagram of displacement (a), shear forces (b) and bending moments (c) in terms of E, (2D scheme)
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Figure 14 Calculation scheme for the case when fault is along the tunnel. cross sections axis
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e For the 2D scheme to transition to another soil
model, the Scott’s Equation (12) was used to obtain
the Young modulus for the ground blocks.

e Value of the displacement in each direction equals

WV
V>

to 0.005 m.
e Same tunnel lining geometrical and physical

parameters.

k, = 40000 kN/m? k, 8000 kN/m?,

= 0.2k,

L

Figure 15 The right-hand cut-off part

Axial forces
2500
Analytical solution
Nz, kN
~
— - — - Numerical simulation [1D) A2000 N

-150 -100 -50

100 150

0 50

Figure 16 Results of axial forces for the silty clay subgrade
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Figure 17 The combined load set
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k, = k, = 40000 £N/m?0.005 m The diagrams of shear
forces and bending moments have a good match, so it is
acceptable to use these schemes to consider the bending
and shear effects. The diagrams of axial forces have error
rate of about 20 %, so it means that this approach allows
to estimate previous assessment of stress-strain state
under the combined load set. However, the displacement
diagrams have a big divergence, as well.

In the 1D scheme it is impossible to consider mass
of the ground above the tunnel, moreover, to transit to
the 2D scheme, an approach given by Scott (1981) was
used. Obviously, these models have different stiffness of
the whole system “ground-structure”.

The main hypothesis is that the coefficient of
the subgrade reaction for the tension-compression is
a quarter of a normal coefficient of the subgrade
reaction for bending and shearing actions ks = Zk'
This investigation was completed for piles and for
tunnels it is necessary to continue this research.

5 Equivalent stiffness

In all the tasks discussed above, the tunnel lining
is assumed to be made of monolithic concrete with
a constant cross-section. However, in engineering
practice, the precast structures, made of reinforced
concrete or cast iron, are also used. In this case, one
needs to take into account the bending stiffness and
tensile-compression stiffness, which differ depending
on the geometry, type of cast iron, type of bars in the
reinforced concrete, location of joints of the segmental
linings, number of bolts in a specific cross-section.

5.1 Equivalent stiffness in tension and
compression

Stiffness of the transverse joint in tension is:

nEjAj

L

K; = (16)
where n is the number of bolts in the cross-section area,
E A- the stiffness of a bolt in tension, /, - length of a bolt.

In compression, bolts do not carry load, so in
this case equivalent stiffness is determined by the
lining stiffness; however in tension the lining ring and
the transverse join link work together, so equivalent
stiffness can be presented:

K E.A./l
K+ EAJL

ls 1
S S
(EA), i

s
EA

- or(EA), = 1

5.2 Equivalent stiffness in bending
of the segment lining

Consider the equilibrium of a part of structure,
consisting of the two halves of a ring and the transverse
joint (Figures 19 and 20) with assumptions:

1) the width of a ring is much smaller than the tunnel
length, so changes in the stress along the axis can
be neglected,

2) the thickness of a ring is much smaller than the

radius.
Equivalent stiffness of the transverse joint [4] is:
Te 3
(E])] _ Eslbl] cos’0 (18)

L coso + (% + 9>sin9’
where I, = 7R’ is an axial moment of inertia of ring’s
cross-section area.

The rotation angle of equivalent ring’s cross-section
area is a sum of rotation angles of the ring and a joint,
ie.

ls ls

_ Li
(ED,, _ BT

(EI);

+ (19)

Combining Equations (18) and (19), one obtains the
equivalent stiffness of the cross-section tunnel lining in
bending as:

cos’0
c0s®0 + cosO + (% + G)Sine

(EI),, = E (20)

6 Conclusions

* Classical model of a beam on an elastic foundation
is adopted for solving the problem of seismic and
geophysics impact on the tunnel in fracture zone;

¢ The 1D and 2D numerical simulation models for
solving the mentioned problem are introduced and
verified by analytical solutions;

*  Those models in complex combined loading case are
tested,;

* The case with equivalent stiffness of the tunnel
lining is presented.
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Figure 18 The combined load set case. Diagrams of displacements (a), shear forces (b), bending moments (c) and axial
forces (d) in terms of distance x.
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Figure 20 Stress distribution and angle displacement of the cross-section area in the transverse joint
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