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Resume
The study examines the question of the tunnel behavior under seismic or 
geophysical load in the zone of changes in the hardness of the surrounding 
soil mass. In the course of the study, the internal forces and displacements 
arising in the structure of a  tunnel in the zone of intersection of the 
boundaries of soil layers with different properties, in the case when these 
layers move relative to each other, were determined by analytical and 
numerical solutions. The data obtained by the analytical method was 
compared to numerical models using practical examples.
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The well-known solution of Equation (1) has the 
form:
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where EI
kb
4 x

b= , here k  is a  coefficient of the 
subgrade reaction, b is the width of a beam, E is Young 
modulus, Ix is a moment of inertia.

In this case, the deformed view is as in Figure 3.
For simplifying the solution, the model of the semi-

infinite beam on an elastic foundation is used (Figure 
4), when x0 3# # . In this case, if ,x ex" "3 3 , 
there is no physical meaning, so C3 – C4 – 0. In addition, 
from initial data follows that q – 0.

In view of the above, Equation (2) will take a form:

cos siny e C x C xx
1 2b b= +b- ^ h .	 (3)

To define the integration constants C1 and C2, one 
has to twice take the derivative of a function in Equation 
(3). Below is the sequence of actions for this operation.

.

cos sin

cos sin

cos cos

sin cos sin

y C e x C e x

y C e x C e x

e x e x

e x e x x

1

x Bx

x x

x x

x x

1 2

1 2

b b

b b

b b b

b b b b b

= +

= +

=- +

+ - = - -

b

b b

b b

b b

- -

- -

- -

- -

l l l

l_
_

^

_

^
i
h

i i

h

	 (4)

1	 Introduction

During an earthquake, soil layers with different 
properties often move in different ways. Tunnels that 
cross such borders may be damaged [1-2]. Tunnels 
located in soft ground can be considered as beams 
in an elastic medium (or considered as beams on an 
elastic foundation), Figure 1. As a  rule, faults are 
usually the boundaries of soil layers with different 
engineering and geological characteristics. This study 
examines the stress-strain state of the tunnel lining 
that crosses the fault zone of two soil blocks [3]. At this 
stage of calculation, the goal is to obtain analytical 
and numerical solutions and then compare them. The 
initial data are parameters of the lining cross-section, 
characteristics of the soil and value of the relative 
displacement of the soil layers [5].

2	 The fault is perpendicular to the tunnel axis

2.1	 Analytical method

Differential equation of the bending beam, (Figure 
2) [7-8], is:

EI
dx
d y

kby qx 4

4

+ = .	 (1)
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Figure 1 Scheme of a tunnel throw fault fracture zone

Figure 2 Classical beam on elastic foundation using the Winkler assumption

Figure 3 Deformed view of the calculation scheme

Figure 4 Accepted calculation scheme
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When x 0= , the tangent angle takes the extreme 
value, the second derivative should be equal to zero, 
whence follows y M0 0 0 02= = =m ^ ^h h .

Substituting the boundary conditions in Equations 
(6), (3) and (5) gives:
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Taking into the constants found, Equation (3) takes 
the form:

.cosy e x2
xT b= b- 	 (8)

Using the well-known dependencies between the 
internal force factors (bending moment M and shear 
force Q) and a deflection function, one can get equations:

;
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The presence of e xb-  multiplier in equations 
indicates that all these functions decrease with increasing 
distance from the block border ,x e 0x" "3 b-^ h . One 
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If the properties of the neighboring ground-blocks 
and bending stiffness of the tunnel lining are constant, 
for right-hand part of an infinite beam the following 
boundary conditions can be used [9]:
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Figure 5 Cross-section area of the tunnel lining
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2.3.2 Model with the 2D plane strain elements.

The next step in verifying the proposed calculation 
method is to create a 2D model.

The tunnel lining is modeled by beam finite 
elements, a  concrete is considered as the isotropic 
elastic material, using parameters like for a  model of 
beam on an elastic foundation. The area of analysis is 
200 x 40 m. The surrounding ground mass is modeled 
by the 2D plane stain elements, using Mohr-Coulomb 
model with parameters: silty clay, Young modulus  
E = 3700 kPa, Poisson ratio v = 0.3, friction angle 

.18 4{= c , cohesion c = 33.8 kPa. A friction was modeled 
like an interface elements with strength reduction factor 
Rc = 0.5. This model is shown in Figure 7.

For the integrity of the analysis, the model of 
a  beam on an elastic foundation was used, as well. In 
this case, one needs to use the coefficient of a subgrade 
reaction k.

Based on an elastic theory, Scott [6] derived the 
relation between the coefficient of subgrade reaction and 
a Young modulus, as follow:

k
d v
E
1 2=
-^ h ,	 (12)

where d is a diameter of a pile. 
For the presented method, it is acceptable to take d 

as the tunnel diameter. In this case, for the silty clay the 
coefficient is k = 6777 kN/m2.

For the convenience of estimating the stress-strain 
state in each model, the graphs for each case are 
presented in Figure 8.

2.4	 Practical application

2.4.1 The 1D scheme

Using the numerical simulation model, a  study of 
the changing inertial forces factors was carried with 
different stiffness of mountain blocks (Figure 9). Getting 
analytical results is a  difficult procedure in solving 

can assess the zone of influence by function e xb- . If 
, .x e0 10= =)b-

If , .x e 0 043b r= =r-  and with an accuracy of 
5% one can say that it equals to zero. In this case, from 
linfb r=  follows:

.linf b
r= 	 (11)

2.2	 Example

As an example, the stress-strain state of the 
tunnel lining (Figure 5) is considered for the beam 
element. Parameters of concrete are: Young modulus 
E Mpa35500= , Poisson ratio .v 0 2= .

The vertical deflection of left-hand part is 
. m0 01T= . The results were obtained by Excel and 

presented below (comparing the analytical solution to 
the numerical simulation’s one).

2.3	 Numerical simulation

2.3.1 Model of a Winkler’s beam on elastic  
  foundation

An analytical solution, using a mathematical model 
of a  beam on elastic foundation, allows to quickly and 
easily assess the inertial forces factors in the tunnel 
lining from the displacement of blocks along the fault 
boundary; however that is not a  universal solution. 
Numerical modeling helps to solve this problem. First, 
the numerical finite element model was created in the 
MIDAS GTS NX software, based on the calculation 
scheme of a  Winkler beam on an elastic foundation 
(Figure 2). The beam nodes are connected to the 
ground by elastic springs with a step of 1 m, the spring 
stiffness corresponds to the stiffness of the ground 
foundation. The length of the simulated tunnel section 
is 200 meters. The external impact is set as a  0.01 m 
upward shift of the left block. The model is shown  
in Figure 6.

Figure 6 Part of the finite-element model of a beam on elastic foundation
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Figure 7 Model with the 2D plane strain elements

(a)

(b)

(c)
Figure 8 Results for the silty clay subgrade. Diagram of displacement (a), shear forces (b) and the bending moments (c)
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models of the 1D and 2D schemes, the Scott Equation 
(12) is used. 
a)	 An effect of the distance z on internal forces in the 

tunnel lining
Consider the following additional initial data: 
E1 = 218400 kN/m2, E2 = 0.2E1 = 43680 kN/m2,  
E3 = E1 = 218400 kN/m2

The distance z  varies from 10 to 100 meters. The 
results are presented in Figure 12. 

b)	 An effect of the value k2 on internal forces in the 
tunnel lining
In this case consider the following additional initial 
data:
E1 = 43680 kN/m2, E3 = 10E1 = 43680 kN/m2,  z = 40 m.
E2 takes values from 43680 to 436800 kN/m2. The 

results are presented in Figure 13.

3	 The fault is along to the tunnel axis

3.1	 Analytical method

Consider a tunnel with length 2L, external diameter 
d, and with compressive (or tensile) stiffness EA. 
Using the Winkler model to describe the interaction 
of the surrounding soil mass and the tunnel structure, 
the coefficient of elastic resistance at the shift ks is 
introduced (Figure 14).

The movement of the tunnel cross-sections w along 
the x axis is described by the following differential 

such problems, because due to different stiffness of the 
rock blocks, the deformation and stress plots are not 
symmetrical.

The stiffness of the first block is characterized by 
a  coefficient of subgrade reaction k1, the stiffness of 
the second block by k3 and the filling space “z” between 
blocks by k2 [9-10].
a)	  An effect of the distance z on internal forces in the 

tunnel lining
Consider the following additional initial data: 
k1 = 40000 kN/m2, k2 = 0.2k1 = 8000 kN/m2, 
k3 = k1 = 40000 kN/m2

The distance z  varies from 10 to 100 meters. The 
results are presented in Figure 10.

b)	 An effect of the value k2 on internal forces in the 
tunnel lining
In this case consider the following additional initial 
data:
k1 = 8000 kN/m2, k2 = 10k1 = 80000 kN/m2, z = 40 m.
The coefficient k2 takes values from 8000 to 8000 

kN/m2. The results are presented in Figure 11. The 
most interesting is that with increase in the subgrade 
reaction coefficient, internal force factors increase too 
and the displacement diagram has t changed slightly.

2.4.2 The 2D scheme

Using this approach, similar operations were 
performed with the 2D scheme. For connection of the soil 

Figure 9 Using different coefficients subgrade reaction
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characteristics was adopted: A = 5.372 m2, d = 6 m. 
Coefficient ks is adopted as a  quarter of the normal 
coefficient of subgrade reaction. For silty clay: ks = 2000 
kN/m2.

For the ease of calculation, consider the right-hand 
cut-off part in accordance with the methods of strength 
of materials (Figure 15).

The well-known differential relationship between 

equation [5]:

EA
dx
d w dk w 0s2

2

r- = .	 (13)

3.2 	Example

For example, a  tunnel lining with the above 

(a)

(b)

(c)
Figure 10 Diagram of displacement (a), shear forces(b) and bending moments(c) in terms of z (1D scheme)
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N dk w kN1687sz r= = .	 (15)

Obviously, the force at the ends of the tunnel is 
equal to zero. Then, one can plot the diagram internal 
forces Nz.

the force and the deflection is:

EA
dx
d w Nz2

2

= .	 (14)

Given Equation (13) and the equilibrium equation 
for the right-hand cut-off part, one gets:

(a)

(b)

(c)
Figure 11 Diagram of displacement (a), shear forces(b) and bending moments (c) in terms of k2 (1D scheme)
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4	 Simultaneous action of the fault 
perpendicular and along the tunnel axis

Using the introduced calculation schemes, it is 
possible to consider the problem combine stress-strain 
state of the tunnel lining (Figure 17). For clarity the 1D 
and 2D schemes were compare, the obtained results are 
presented in Figure 18.

Initial data: 
•	 For  the 1D scheme: 

k1 = 40000 kN/m2, k2 = 0.2k1 = 8000 kN/m2, 
k3 = k1 = 40000 kN/m2

3.3 	Numerical simulation

For comparing the results, the previously presented 
models of the tunnel as beams on an elastic base with 
springs (1D) and model with ground given as plane 
strain elements (2D) are used.

Using these models, with a  difference only in 
the direction of the applied load (the horizontal 
direction instead of the vertical one). Friction was 
modeled like an interface elements with strength 
reduction factor Rc = 0.5. The results are presented  
in Figure 16.

(a)

(b)

(c)
Figure 12 Diagram of displacement (a), shear forces (b) and bending moments (c) in terms of  z (2D scheme)
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(a)

(b)

(c)
Figure 13 Diagram of displacement (a), shear forces (b) and bending moments (c) in terms of E2 (2D scheme)

Figure 14 Calculation scheme for the case when fault is along the tunnel. cross sections axis
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to 0.005 m.
•	 Same tunnel lining geometrical and physical 

parameters. 
k1 = 40000 kN/m2, k2 = 0.2k1 = 8000 kN/m2, 

•	 For the 2D scheme to transition to another soil 
model, the Scott’s Equation (12) was used to obtain 
the Young modulus for the ground blocks.

•	 Value of the displacement in each direction equals 

Figure 15 The right-hand cut-off part

Figure 16 Results of axial forces for the silty clay subgrade

Figure 17 The combined load set
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5.2	 Equivalent stiffness in bending  
of the segment lining

Consider the equilibrium of a  part of structure, 
consisting of the two halves of a ring and the transverse 
joint (Figures 19 and 20) with assumptions:
1)	 the width of a ring is much smaller than the tunnel 

length, so changes in the stress along the axis can 
be neglected, 

2)	 the thickness of a  ring is much smaller than the 
radius.
Equivalent stiffness of the transverse joint [4] is:

,
cos sin

cosEI
l

E I l

2

j
s

s S j
3

i r i i

i=
+ +

^
a

h
k 	 (18)

where I R ts
3r=  is an axial moment of inertia of ring’s 

cross-section area.
The rotation angle of equivalent ring’s cross-section 

area is a sum of rotation angles of the ring and a joint, 
i.e.

EI
l

E I
l

EI
ls

eq s s

s

j

j
= +^ ^h h 	 (19)

Combining Equations (18) and (19), one obtains the 
equivalent stiffness of the cross-section tunnel lining in 
bending as:

.
cos cos sin

cosEI E I

2

eq s s
3

3

i i r i i

i=
+ + +

^
a

h
k 	 (20)

6	 Conclusions

•	 Classical model of a beam on an elastic foundation 
is adopted for solving the problem of seismic and 
geophysics impact on the tunnel in fracture zone;

•	 The 1D and 2D numerical simulation models for 
solving the mentioned problem are introduced and 
verified by analytical solutions;

•	 Those models in complex combined loading case are 
tested;

•	 The case with equivalent stiffness of the tunnel 
lining is presented.

k3 = k1 = 40000 kN/m20.005 m The diagrams of shear 
forces and bending moments have a good match, so it is 
acceptable to use these schemes to consider the bending 
and shear effects. The diagrams of axial forces have error 
rate of about 20 %, so it means that this approach allows 
to estimate previous assessment of stress-strain state 
under the combined load set. However, the displacement 
diagrams have a big divergence, as well. 

In the 1D scheme it is impossible to consider mass 
of the ground above the tunnel, moreover, to transit to 
the 2D scheme, an approach given by Scott (1981) was 
used. Obviously, these models have different stiffness of 
the whole system “ground-structure”.

The main hypothesis is that the coefficient of 
the subgrade reaction for the tension-compression is 
a  quarter of a  normal coefficient of the subgrade 
reaction for bending and shearing actions .k k4

1
s=  

This investigation was completed for piles and for 
tunnels it is necessary to continue this research.

5	 Equivalent stiffness

In all the tasks discussed above, the tunnel lining 
is assumed to be made of monolithic concrete with 
a  constant cross-section. However, in engineering 
practice, the precast structures, made of reinforced 
concrete or cast iron, are also used. In this case, one 
needs to take into account the bending stiffness and 
tensile-compression stiffness, which differ depending 
on the geometry, type of cast iron, type of bars in the 
reinforced concrete, location of joints of the segmental 
linings, number of bolts in a specific cross-section.

5.1 Equivalent stiffness in tension and 
compression

Stiffness of the transverse joint in tension is:

K
l

nE A
j

j

j j
= ,	 (16)

where n is the number of bolts in the cross-section area, 
Ej Aj- the stiffness of a bolt in tension, lj - length of a bolt.

In compression, bolts do  not carry load, so in 
this case equivalent stiffness is determined by the 
lining stiffness; however in tension the lining ring and 
the transverse join link work together, so equivalent 
stiffness can be presented:
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(a)

(b)

(c)

(d)
Figure 18 The combined load set case. Diagrams of displacements (a), shear forces (b), bending moments (c) and axial 

forces (d) in terms of distance x.
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Figure 19 Stress distribution and angle displacement of the cross-section area in the ring

Figure 20 Stress distribution and angle displacement of the cross-section area in the transverse joint
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