
C O M M U N I C A T I O N SC O M M U N I C A T I O N S

38 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

1. Introduction

Rapid expansion of communication technologies is widely in-
fluencing our everyday life. Userbase of communication services
grows at such a rate that technology development constantly faces
challenges in order to sustain stability and reliability of services.
Such state of the communications sector has led to the need of
developing new techniques to enhance speed, expand bandwidth,
and provide higher security, to mention a few.

Neural networks, as a result of their inherent learning and
adaptive qualities, have enormous applicability in this explosive
area of technology. Articial neural networks represent the technical
abstraction of the biological structures observable in the nervous
system of living creatures. The nervous system of biological entities
consists of the elementary processing blocks-neurons. Neurons
are interconnected by synapses and axons, enabling propagation
of bio-signals and creation of bio-information pathways. Huge
interconnectivity allows formation of wide networks with massive
parallel processing capabilities. Just as neural networks, the
com-munication systems are composed of units that process
signal/information transmitted over cables or ether using well-
defined protocols such as TCP/IP, ISDN, CDMA, TDMA, etc.
This apparent parallel uncovers enormous potential of neural

networks in communication technologies of future. It positions
the neural networks into a place where a considerable advantage
of their adaptability (and other properties) can be taken.

At present the communication technologies could be viewed
as algorithm-oriented. Switching, routing, and packet transmitting
is controlled by algorithms that feature none or very little adapta-
bility. This trend has originated from the classical information
science established in the early 50’s by Shannon [1] and has
further been strengthened by development of computer science.
The nodes in communication infrastructure, though they are highly
so-phisticated, automated, and computerized systems, utilize the
algorithmic concepts lacking higher-order auto-adaptability to
external and/or internal conditions. Lack of adaptability results in
lower effectiveness of the global communication infrastructure as
well as its elementary units.

The future of communication technologies inevitably calls for
higher adaptability and/or learning, flexibility, and “intelligence“.
With the current advancement of neural networks all these
qualities can be achieved using conventional computer systems
without substantial investment in rebuilding the existing physical
communication infrastructure. This economical solution is likely
to determine the future course of communication technologies.

INTELIGENTNÉ ADAPTABILNÉ SYSTEMY: PRÍSTUP PRVÉHO RÁDU

INTELLIGENT ADAPTABLE SYSTEMS: FIRST ORDER APPROACH

INTELIGENTNÉ ADAPTABILNÉ SYSTEMY: PRÍSTUP PRVÉHO RÁDU

INTELLIGENT ADAPTABLE SYSTEMS: FIRST ORDER APPROACH

Peter Géczy - Shiro Usui *

* Peter Géczy, Shiro Usui
Future Technology Research Center, Toyohashi University of Technology, Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

Budúcnosť komunikácií nevyhnutne vyžaduje technológie umožňujúce vysokú úroveň flexibility, adaptability a inteligencie. Inteligentné
adaptabilné systémy sú obzvlášť vhodné pre túto úlohu. Väčšina adaptabilných systémov je založená na neurónových sieťach. Umelé neurónové
siete sú systémy s enormnou interkonektivitou. Neurónové siete sa neprogramujú. Sú schopné nadobudnúť významné vlastnosti vďaka adap-
tačnému procesu nazývanému učenie. Predkladaný inteligentný adaptabilný systém využíva technológiu neurónových sietí. Systém umožňuje
internú viacúrovňovú adaptabilitu. Vzhľadom na dostupné dáta autonómne adaptuje svoje parametre a štruktúru. Z externej perspektívy dis-
ponuje kontrolou vlastného vstupno-výstupného interfejsu. Systém je schopný vybrať si vhodné učiace exempláre z dostupného množstva dát
tak, aby dosahoval optimálny progres učenia. Po naučení systém disponuje možnosťou výstupu v logickom formáte. Uvedený inteligentný adap-
tabilný systém pozostáva z niekoľkých modulov. Princíp a funkcia každého z modulov sú popísané a ilustratívne demonštrované.

Future of communications inevitably calls for technologies that feature high-level flexibility, adaptability, and intelligence. Intelligent
adaptable systems are particularly suitable for this mission. Majority of adaptable systems utilize neural networks. Artificial neural networks are
systems with huge network-like interconnectivity. They are not programmed. Neural Networks gain valuable properties through the process of
adaptation called learning. Presented intelligent adaptable system utilizes neural network technology. The system incorporates internal
adaptability at several levels. It autonomously adapts its parameters and structure to the presented data. Externally, it appropriately manages its
input-output interfaces. The system is able to select suitable training exemplars from the available amount of data in order to achieve the optimal
learning performance. After training the system provides logical output format of the task. Introduced intelligent adaptable system consists of
several modules. Principle and functionality of each module is described and illustratively demonstrated.

https://doi.org/10.26552/com.C.2000.2.38-55

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

39K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

Novel technologies will impact the communication sector in
two major spheres: global and local. Globally influential future
communication technologies are required in areas such as network
management & control, resource allocation, market prediction,
security, reliability, fault tolerance, and datamining. Intelligent
adaptable systems (IAS) can be applied directly (or indirectly) to
all these domains. In the local domain, IAS have already been
applied to routing algorithms (classical traveling salesman
problem), voice, image & character recognition, intelligent search
& information filtering, and access control [2]. However, the
already wide spectrum of IAS applicability is only the initial stage.
Further expansion and progress of communication technologies
and services will uncover numerous other areas where IAS will be
the preferred technological choice.

2. Elements of Intelligent Adaptable Systems

Intelligent adaptable systems draw on the parallel of brain-
style information processing. All the changes in the adaptivity of
the brain as well as stimuli selectivity occur simultaneously. At the
same time the brain is capable of processing incoming informa-
tion from the receptors, producing adequate responses, and yet
adapting itself synaptically and structurally. Although the process-
ing speed of neurons is relatively slow (in the range of millise-
conds) the massive parallelism in the brain sufficiently subsidizes
this ineficiency. Due to the massive parallelism, the brain is con-
tinuously able to process an enormous amount of information.

Block structure of brain-like IAS is depicted in Fig. 1. The
system manages its input interface by selecting appropriately the
most suitable exemplars for learning. The central part of the system
is an artificial neural network. The artificial neural network con-
sists of elementary computational units-artificial neurons-inter-
connected by real valued weight connections. The artificial neural
network should be adaptable both at the microstructure level
(connection adaptation) and at the macrostructure level (structur-
al adaptation). The concept displayed in Fig. 1, however, does not
end only with the dynamic adaptability and exemplar selectivity.
It represents a progressive step forward-towards the logical repre-
sentation of knowledge that a network gains by training. This is
the task of the knowledge acquisition module. The knowledge
acquisition module should be able to extract knowledge that the
network acquires during the learning. It is also important to note
that the subsystems should dynamically co-operate and simulta-
neously operate on the artificial neural network during the
process of learning in order to achieve satisfactory performance
on the trained task.

Sample selection is the task of selecting suitable training
exemplars from a training data set with the aim of improving the
quality of training. Early approaches to sample selection have
focused only on determining the informatively sucient subset of
training set which was thereafter fixed and used for training. An
informatively sufficient sample set was determined based on
either the worst case analysis (VC dimensions) or the average case
analysis (Bayesian statistics, information theory) [3]. More recent
approaches, particularly those linked with on-line training, have

focused on determining the sample distribution with respect to
which they actively sample data [4] – [8].

None of the aforementioned approaches are used in this
study. The dynamic sample selection technique, presented in this
study, does not impose any restrictions on the sample distribution
and neither on the selected sample size. The number of the selected
exemplars is allowed to vary at each iteration. Also the particular
training set selected at one iteration may completely differ from
the one selected at another iteration. The artificial neural network
is given the freedom to select the exemplar set suitable for the
fastest progress at each iteration.

The presented dynamic sample selection is capable of select-
ing an appropriate exemplar set that may vary in size and in the
selected samples at each iteration of training. It is based on the
controlled normed expression of error gradient that largely deter-
mines the search direction of the optimization technique. The
error gradient is formed of gradients for each sample presented to
a network. Thus the selection of training exemplars also plays
a role in determining the search direction of an optimization tech-
nique. An appropriately determined search direction formed of
suitably selected exemplars at each iteration may increase the con-
vergence speed of optimization and hence also training.

Conection adaptation in neural networks is seen as an optimi-
zation task. The objective is to minimize the discrepancy between
a network mapping and some true mapping with respect to the
measure denoted as the objective function. True mapping is
usually not available in its entirety. Having complete information
about the true mapping would make the network’s training mean-
ingless unless a benchmark evaluation is under consideration.
However, even in such cases it is preferred to use benchmark data
sets of well-known real-world problems. True mapping is thus
represented in its incomplete form, that is, in a form of a finite
number of samples.

Relevance of the optimization field [9] in neural network
training gives rise to the use of several optimization methods. In

KNOWLEDGE�
ACQUISITION

STRUCTURAL�
ADAPTATION

CONNECTION�
ADAPTATION

 SAMPLE�
SELECTION

Fig. 1 Block scheme of brain-like IAS. Each module represents
a specific underlying feature of learning. A knowledge acquisition

module enables the extraction of knowledge from an artificial neural
network trained on a specific task in the form of logical rules. All the

modules should dynamically and simultaneously co-operate.

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

40 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

this study preference is given to first order line search optimiza-
tion techniques [10] – [19], due to their relative computational
inexpensiveness, yet reasonable convergence speed. Second order
optimization techniques may reach faster convergence rates at the
expense of a larger number of calculations. They usually require
second order information, that is, the Hessian matrix or its ap-
proximation [20] – [23]. Calculation of the Hessian matrix or its
approximation becomes pointless for large data sets and/or large
network structures due to unbearable computational expensive-
ness and memory requirements. The fastest achievable conver-
gence rates of first order line search techniques are superlinear
convergence rates. Computational complexities of first order ap-
proaches are linear, which is one order lower than that of second
order techniques. First order approaches have also lower memory
requirements. To be specific, the steepest descent methods have
no memory requirements and conjugate gradient techniques have
linear memory requirements.

Structural adaptation in neural networks aims at optimizing
the structure and yet resulting in a network with the required
properties. Structural optimality may have a positive impact on
generalization property of neural networks. Non-optimality of the
structure may cause several complications during and also after
training. Underdetermined network structures are incapable of
satisfactorily performing the task given by the training set.
Overdetermined networks normally display unwanted overfitting
properties after training. These and other complications can be
avoided by properly fitting the structure of a neural network as
well as its parameters.

Former approaches to the structural adaptation of neural
networks were based either on regularization or smoothing. The
application of regularization techniques results in the modification
of the objective function with respect to which the network’s
parameters are adapted [24], [25]. The objective function then
contains a penalizing term for weight connections. The penalizing
term leads to connection value-spread. Some connections are forced
to take higher values while others lower. Connections having low
values are classified as irrelevant and thus eliminated from
a structure. Connections with low values are statically irrelevant
for mapping performed by a neural network, however, they may
have a dynamic relevance during training which may help the
network to progress faster. Smoothing approaches are essentially
nondynamic [26] – [28]. The network undergoes structural adap-
tation after training. Curvature of the error surface is evaluated
after training and the structural elements of a network corres-
ponding to low curvature values are then removed.

The approach to structural adaptation presented in this study
is based on dynamic performance measures [29] – [31]. Perform-
ance measures monitor the combined dynamic and static perform-
ance of a network up to its particular structural elements. They
also detect disturbing features of error surface. Controlling the
performance of a network by eliminating the low-performance
structural elements and increasing the performance of a network
by adding new structural elements represents a new concept for
dynamic structural adaptation of neural networks.

Knowledge acquisition delineates a step towards logical repre-
sentation of a network’s “knowledge“ gained by training. Since

artificial neural networks outline an abstraction of brain struc-
tures, it has been a concern of researchers to identify how
a network’s gained knowledge can be extracted. Distributed repre-
sentation of knowledge in neural networks makes it a difficult
task. Artificial neural network structures do not correspond to any
logical representation of knowledge known to humans. A particu-
larly suitable representation of knowledge would be that of logical
rules. Such an achievement may have wide impact not only on the
design of a new generation of knowledge based systems, but also
on our understanding of knowledge representation in the brain.

Currently available approaches to knowledge extraction from
artificial neural networks can be viewed from the perspective of
rule types and/or training approaches to neural networks
predetermined to rule extraction [32] – [35]. The type of rules
leads to the distinction of crisp from fuzzy rule extraction
techniques. Training approach mainly separates the rule
extraction techniques using structure adaptable training and static
training. All of the aforementioned approaches, however, strongly
precondition the training or the structure of a neural network for
further rule extraction tasks. This means, for example, that a neural
network may contain nodes representing logical functions or
fuzzy membership functions, the structure of the network may be
predetermined according to the intended rules to be extracted,
a priori knowledge about the task can be implemented into
artificial neural networks, etc. All of these techniques reduce the
complexity of the principal problem of rule extraction from
artificial neural networks.

This study approaches the rule extraction issue in its principal
form, that is, independent of the training strategy for neural net-
works and without preconditioning either the network’s structure
or processing elements. It allows the neural network to learn
freely the task given by the training set. Once the network achie-
ved satisfactory performance in that it maps training data suffi-
ciently correctly, the rule extraction method is applied to transform
the network’s knowledge into the form of logical rules. The rule
extraction method is derived only on the basis of a network
mapping and is independent of connection adaptation, sample
selection, and structural adaptation [36] – [39].

3. Foundations of the Approach and Notation

Multilayer artificial neural networks, or multilayer percep-
trons, are the primary interest in this study. Essentially, a multi-
layer network is a network which has one input layer, one output
layer, and one or more hidden layers. The number of hidden layers
can theoretically be unlimited. However, practically they do not
exceed several layers. Although, for some application oriented
purposes, one can find multilayer perceptron networks with more
than one hidden layer, theoretically it has been proven that only
one hidden layer is sufficient for universal approximation capabi-
lities of neural networks [40], [41]. This means that an arbitrary
functional dependency can be approximated to an arbitrary level
of accuracy by a three-layer artificial neural network with an appro-
priate number of hidden units. Hence the focus on three-layer per-
ceptron networks with the following structure (see Fig. 2).

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

41K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

Mapping of a Three-Layer MLP Network
A mapping F is said to be a mapping of a three-layer MLP

network defined as follows,

F � FHO � FIH (F : �NI → �NO),

where NI is the dimensionality of the input space and NO is the
dimensionality of the output space. FHO is an affine mapping from
NH-dimensional subspace DNH of �NH to �NO.

FHO � (FHO1
, … , FHONO

), FHO : DNH → �NO

F(p)
HOk

� �
NH

j�1
wjk F(p)

IHj
� �Ok

where F(p)
IHk

is the output of the k–th hidden unit for the p–th
training pattern, �Ok

is the threshold value (�Ok
� R) for the k–th

output unit, wjk is the real valued weight connection connecting
the j–th hidden unit with the k–th output unit. FIH is nonlinear
multidimensional mapping

FIH � f�� � AIH (FIH : �NI → DNH),

F(p)
IHj

� f (�
NI

i�1
vij x(p)

i � �hj
)

where �hj
is the threshold value (�hj

� R) for the j–th hidden
unit, vij is the real valued weight connection connecting the i–th
input unit with the j–th hidden unit, x(p)

i is the i–th coordinate of
the p–th input vector x(p), f�� stands for a multidimensional

nonlinear sigmoidal transformation in which each dimension of
its NH -dimensional domain vector is transformed by a sigmoidal
transfer function f, (f�� : �NH → DNH), AIH is an input-to-hidden
affine submapping AIH : �NI → �NH.

Training in MLP Networks
Let T be a training set with cardinality NP ,

T � {[x, y] x � �NI
 y � �NO} , T � NP ,

where each pair [x, y] contains the input pattern x of the
dimensionality NI , and the expected output pattern y of the
dimensionality NO . Let u denote a set of free system parameters
of a network (weights), u � (w, h, v, �), and the objective
function E be defined as follows,

E(u, x) � �
2NP

1

NO

� �
NP

p�1
�
NO

k�1
(Fk(u, x(p)) � y(p)

k)2 . (1)

Training in MLP networks is a process of minimization the
objective function E,

arg min
u

E(u, x),

given a finite number of samples [x, y] � T drawn from an arbitrary
sample distribution.

Jacobean matrix, JF, for a neural network is a matrix of the
first derivatives of a network’s mapping with respect to the free
parameters. Analogously, error matrix, JE, is a matrix of the first
derivatives of an error function with respect to the free
parameters. It can be expressed as a multiplication of the diagonal
residual matrix
O and Jacobean matrix JF , JE �
O � JF .

The task of rule extraction further requires to define classifi-
cation and its realization by layered artificial neural networks.

Classification
Let F � (F1, …, FNO

) be an arbitrary multidimensional mapping
F : �NI → �NO, and set CLASS � {CLS1, …, CLSNO

} be a set of
classes CLSc � �. Classification CLS with respect to mapping F,
CLS(F), is defined as follows,

CLS : �NI → CLASS

index(CLSc) � index(Fc) such that
Fc(x) � max

l
[Fl(x)], l � 1, …, NO,

where x is an input vector, Fl is the l–th coordinate mapping of F,
and the function index returns an index of an indexed operand.
The classification CLS(F) defines a partitioning of the input space
�NI denoted as PCLS(F).

Classification task, given by a training set T having NO classes:
{CLS1, …, CLSNO

}, is performed by a neural network in such
a way that each unit in the output layer is a representative of one
class CLSc , c � 1, …, NO . After presenting an input pattern, the
strongest response in the output layer is selected as the classifica-
tion answer of a network.

OUTPUT

INPUT
X

Y

W

V

F

F

F

IH

HO

IHA f

Input
Layer

Hidden
Layer Output

Layer

Threshold
 unit

oΘ Θh

Fig. 2 A model of a three-layer artificial neural network with a mapping
scheme. The network contains input, hidden, and output layers. The

input layer distributes input signals into the hidden units. The hidden
units are nonlinear elements with sigmoidal nonlinear transfer
functions. The output units have linear transfer functions. The

network’s mapping F is decomposed into the input-to-hidden submapping
FIH and the hidden-to-output submapping FHO (F = FHO � FIH). The

input-to-hidden submapping FIH (FIH = f�� � AIH) is further decomposed
into the affine input-to-hidden submapping AIH and the nonlinear

transformation f��

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

42 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

4. Dynamic Sample Selection

Dynamic sample selection techniques presented here focus
on controlling the normed progressive search direction of the
optimization technique by appropriate selection of exemplars.
This enables determining an exemplar subset of training set that
may vary at each iteration of optimization. Hence the name
“dynamic sample selection“ (DSS). Theoretical foundations of
DSS have general validity. However, the specifics resulting from
the use of first order line search optimization techniques and the
type of the objective function are addressed.

4.1 General Functions & Dynamic Sample Selection

In this subsection the optimization case of general functions
by first order line search techniques employing dynamic sample
selection is addressed. The only requirement on optimized func-
tion E is the existence of the first partial derivatives. For this class
of functions, practically very suitable expressions for dependen-
cies of normed search directions on selected set of exemplars at
each iteration of optimization procedure are shown. Theoretical
details on derivation of the expressions can be found in [42] – [46].

Squared l2 norm of the gradient is approximately expressed as,

�E(u(k))2
2 � �

(


1

�

�
(k)

a


)

� E(u*) � E(u(k)),

where a is a rate of convergence of steepest descent optimization
technique, �(k) is a scaling factor of the search direction at the
state u(k), �E(u(k)) is a gradient vector at the given state u(k), and
u* is the optimum point.

The expressions for normed vector of search direction
formulated above have particularly suitable form not only for the
implementation purposes, but also for further analysis. The next
intention is to observe dependence of squared l2 norm of search
direction on selected training set at a given step of learning:

�E(u(k))2
2 � �ET(k)(u(k))2

2 � �
(


1

�

�
(k)

a


)

� �

 � [E(u*) � E(u(k)) � ET(k) (u*) � ET(k)(u(k))] , (2)

where �ET(k) (u(k)) is a gradient vector at the state (u(k)) for the
selected set T (k), and ET(k) (u*) is a value of E at the optimum
point u* for the set T (k).

This underlines the fact that the diference of normed pro-
gressive directions of a neural network presented with the com-
plete training set T and the selected training set T (k) at the step
k is proportional to the residual expression (2). Proportionality is

give by the scaling factor, �
(


1

�

�
(k)

a


)

�. Implying from these theoreti-

cal results a general behavior of an arbitrary sample selection tech-
nique can be formulated:

For any convergent sequence {u(k)} of states of first order
optimization technique such that {u(k)} → u*, where u* is the
optimum point, holds: s(k)

T(k)2 → s(k)2 .

The proof of the statement is detailed in [44]. Freedom of
selecting exemplars dynamically at each iteration of training is
controlled by the convergence of the optimization procedure.
When the optimization procedure is relatively far from the
optimum point the freedom for choosing proper exemplars in
order to progress is higher. The amount of freedom decreases as
the optimization procedure converges to the optimum point. That
is, asymptotically l2 norm of the search direction s(k)

T(k) for selected
data set T (k) should approach l2 norm of the search direction s(k)

for the complete data set T, as the algorithm reaches the optimum
point. It is also important to note that the above statement holds
for arbitrary dynamic sample selection mechanism, arbitrary first
order optimization procedure, and arbitrary function E.

4.2 Functions having Lipschitz Continuous First Partial
Derivatives & Dynamic Sample Selection

In the previous subsection the only assumption on functions
to be optimized was the existence of first partial derivatives. The
case addressed in this subsection imposes one more assumption
on function E, that is, the Lipschitz continuity condition [47]:

For a given initial point u0 � �n if E � C1 on the set S(u0) �
� {uE(u) � E(u0)}, there exists a Lipschitz constant K � 0
such that,

�E(u(i)) � �E(u(j))2 � K � u(i) � u(j)2

for every pair u(i), u(j) � S(u0).

Further focus is on deriving feasible expressions of normed
gradient vectors allowing establishment of the dynamic sample
selection approach for functions having Lipschitz continuous first
partial derivatives. Similarly as in the previous case, the depen-
dence of normed gradient vectors on the selected set of exemplars
can be expressed using l2 norms.

�E(u(j)) � �ET(j)(u(j))2 �

� K �

Existence of stationary point u* implies the following.

1 � �ET(k)(u(k))2 �

� K �

The above expressions are generally valid for any two points
u(j), u(j), or the stationary point u*. Their validity is also indepen-
dent of optimization procedure. Hence they can be used for imple-
menting dynamic sample selection mechanism into first order,
second order, heuristic, or any other optimization procedure.

E(u*) � E(u(k)) � ET(k)(u*) � ET(k)(u(k))
�����

�E(u(k))2
2

E(u(i)) � E(u(j)) � ET(j)(u(i)) � ET(j)(u(j))
�����

�E(u(k))2
2

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

43K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

The relationship between the Lipschitz constant K and other
parameters is formulated as,

�

1

�

�
(k)

a


� � K.

This expression outlines important statement for practical
implementation of dynamic sample selection mechanism into first
order line search optimization procedures. It helps to simplify
expressions for monitoring the dependence of the gradient vectors
on selected set of exemplars.

4.3 Implementation and Simulations

A gradient vector �E in batch mode of back propagation
procedure is formed as the sum of the gradients of the error
function E for each exemplar presented to a network. Hence each
presented exemplar plays a role in determining the search
direction. By eliminating certain exemplars at a given step of
training the search direction is modified. Proper modification of
the search direction by exemplar selection may then be beneficial
for the convergence speed increase of the optimization procedure.

Direct application of the derived theoretical material leads to
the dynamic sample selection algorithm based on monitoring the
values of the normed gradient vectors.

��E(u(k))2
2 � �ET(k)(u(k))2

2 � PI(k)
1 � , (3)

PI(k)
1 � �

(


1

�

�
(k)

a


)

� E(u*) � E(u(k)). (4)

Similarly, dynamic sample selection approach can be derived
for functions having Lipschitz continuous first partial derivatives.

��E(u(k)) � �ET(k)(u(k))2 � PI(k)
2 � (5)

PI(k)
2 � �

�E

K

(u

(k

(

)

k))2

� E(u*) � E(u(k)), (6)

and

�1 � �ET(k)(u(k))2� PI(k)
3 � , (7)

PI(k)
3 � �

�E

K

(u

(k

(

)

k))2
2

� � E(u*) � E(u(k)), (8)

where K(k) is a Lipschitz constant at the k–th iteration calculated as,

K(k) �

The expressions (3), (5), and (7) naturally follow from the
presented theoretical material. However, they themselves require
minimization process in order to find the proper set of selected
exemplars T (k). The best solution to this problem would be to test
all possible combinations on T. Apparently, this would result in
computational excess of a method and impracticality for large
data sets. To avoid the impracticality it is necessary to utilize

�E(u(k)) � �E(u(k � 1))2
����

u(k) � u(k � 1)2

min
T(k) � T

min
T(k) � T

min
T(k) � T

a priori knowledge on importance of exemplars for progress of
first order optimization techniques. Importance of a given exem-
plar is measured in terms of l1 norm of �E(kp), that is gradient of
E for the p–th pattern at the k-th iteration.

Practically, in cases when optimization requires higher preci-
sion, asymptotic behavior is not always satisfied due to the appro-
ximations introduced in terms PI(k)

1 (4), PI(k)
2 (6), and PI(k)

3 (8).
Then dynamic sample selection may have divergent behavior and
may eliminate large amount samples even if the algorithm has
reached the attractor basin.

For this reason, the suppression function is introduced.

NEP � (NP � NTP) (9)

NEP is the maximum number of eliminated exemplars, NP is the
cardinality of the data set T, NTP is the pre-determined minimum
number of exemplars in order to keep the optimization problem
well-posed, Iter is a given iteration, PI(j)

i , i � 1, 2, 3, is one of
functions (4), (6), or (8).

The efectiveness of the dynamic sample selection algorithm
implemented into the back propagation training algorithm is
demonstrated on simulations. Simulation tasks are selected
according to the value of E-FP (exemplars & free parameters)
ratio. First, performance of dynamic sample selection algorithm is
tested on the problem with E-FP ratio 1.66. The second
simulation task has high value of E-FP ratio equal to 15.

In the case of E-FP ratio 1.66 the network had configuration
4–3–1. The network was trained on the Lenses data set [48]. The
hidden layer of the network contained sigmoidal transfer function
units. The network was trained on the Lenses data set. The stopp-
ing criterion for network’s training was the value of the expected
error less than or equal to 0.05. The weights of the network were
initialized randomly in the interval ��0.1, 0.1 � which corres-
ponded to the steepest part of the sigmoidal nonlinearity in the
hidden units. It was observed that the implementation of dynamic
sample selection algorithm, based on (3) and (4) into the back
propagation training procedure results in 32.06 % overall increase
of convergence speed measured in number of training cycles requir-
ed to reach the given value of the expected error.

In the second case we observed the simulation results for the
problem that had E-FP ratio equal to 15, which is extremely high.
The network had configuration 4–2–1 with sigmoidal hidden
units. The training set was the IRIS data set [49], [50].
Network’s free parameters were again initialized as random values
in the interval ��0.1, 0.1 �. Training was terminated when the
value of the expected error decreased below 0.013. Overall in-
crease of convergence speed of 4.03 % is indicated for implemen-
tation of dynamic sample selection based on (3), (4), and 3.27 %
for dynamic sample selection implementation utilizing expres-
sions (5), (6).

�
It

1

er
� �

Iter

j�1
PI(j)

i

��
PI(1)

i

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

44 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

5. Parameter Adaptation

This section introduces modification of the first order line
search optimization technique with automatically and dynami-
cally adaptable parameters. The focus is on dynamic adjustments
of both step length �(k) and momentum term �(k). Step length
�(k) and momentum term �(k) are allowed to take diferent values
at each iteration of the optimization procedure [51] – [56].

First observed is the extension of first order line search opti-
mization procedure with adaptable step length �(k) to a procedure
that additionally incorporates constant momentum term �. Initially,
the following expressions are obtained [56]:

�(k) � �(1 � a) ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
� �

� � � �



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 , (10)

and

�(k) � �(1 � a) ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
� �

� � � �



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 , (11)

where s(k�1) is a search direction at the (k�1)–th iteration of the
optimization procedure.

Assumption of superlinear convergence rates results in the
following update formula for step length �(k).

�(k) � ��E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
�����



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 (12)

Superlinear convergence rates assumption shrinks the boun-
daries (10) and (11) for step length �(k) to a single point. This
naturally simplifies the line search subproblem to a one step
calculation of �(k). In order to attain higher flexibility, it is also
recommended to use the median value of (10) and (11) for calcu-
lation of the step length �(k),

�(k)� �a ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
�����



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	(13)

where a is a parameter determined by user. The dependency of the
modifiable momentum term �(k) can be obtained from first order
line search optimization techniques, and conjugate gradient tech-
niques in particular. Considering the definition of general linear
convergence rates and essential formula for parameter updates of
conjugate gradient methods [57], the following inequalities are
derived [56].

�(k)� �
s(k�

1
1)2

� ��(k) � �E(u(k))2 �

� (1 � a) � �
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(k

2

))
� 	 (14)

�(k)� �
s(k�

1
1)2

� ��(k) � �E(u(k))2 �

� (1 � a) � �
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(k

2

))
� 	 (15)

From the assumption of superlinear convergence rates of
conjugate gradient method the following implies.

�(k)� �
s(k�

1
1)2

� ��(k) � �E(u(k))2 �

��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(k

2

))
� 	 (16)

To determine the dependencies of step length �(k) in the
conjugate gradient method it is possible to apply the formerly
obtained results. Then for the step length �(k), considering the
dynamically adjustable momentum term �(k),

�(k) � �(1 � a) ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
��

� �(k) � �



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 , (17)

and

�(k) � �(1 � a) ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
��

� �(k) � �



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 , (18)

is implied. Accounting for the superlinear convergence rates of the
conjugate gradient method,

�(k) � ��E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
���(k)��



�

s

E

(k

(

�

u

1

(k

)

)


)

2

2

�	 (19)

is obtained.

As clearly seen from (14)–(16) and (17)–(19) the expressions
for the adjustable momentum term �(k) (14)–(16) incorporate
step length �(k), likewise the expressions for adjustable step length
�(k) (17)–(19) contain momentum term �(k). This in practice
leads to the dynamic loop. Thus it is impossible to determine
which expressions should be calculated first (whether the ones for
�(k), or the ones for �(k)). To overcome this difficulty it is necessary
to find another relevant expression for either the adjustable
momentum term �(k) or the adjustable step length �(k).
Theoretical material in [51] already offers possible solution to this
problem in the form of the expressions,

�(k) � a ��
E


(


u

�

*)

E

�

(u(

E
k)

(

)

u



(



k

2
2

))
� , (20)

�(k) � a ��
�

E

E

(

(

u

u

(

(

k

k

)

)

)

)


2

2

� . (21)

However, it can easily be verified that the substitution of (20)
into (16) leads to �(k) � 0, which on one side supports the

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

45K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

sufficiency of only adjustable step length �(k), but on the other
side, it eliminates the momentum term. Hence the only
appropriate choice for �(k) is expression (21). Then, substitution
of (21) into (16) results in the expression for the adaptable
momentum term �(k) as follows,

�(k)� �

� �E(u(k)) � E(u*) � E(u(k))	 (22)

Taking into account the absolute value E(u*) � E(u(k)) in
(22) the following two expressions for the modifiable momentum
term further imply,

�(k)� a � , (23)

and

�(k)� a � . (24)

It is important to note that the convergence proof in [56]
further eliminates expression (24). Use of expression (24) results
in the divergence of the optimization technique. Then the only
suitable expression for adaptable momentum term �(k) is (23).
The constant a stands for the universality of the algorithm. This
leads to the following modification of the conjugate gradient
optimization technique.

ALGORITHM 1
1. Set the initial parameters: u(0), E(u*), (�).
2. Calculate the gradient �E(u(k)).
3. Constant momentum: calculate �(k) according to expression

(12) or (13).
Adaptable momentum: calculate �(k) according to (21) and
�(k) as (23).

4. Update the system parameters as follows.

u(k�1) � u(k) � �(k) � �E(u(k)) � �(k) � s(k�1).

ALGORITHM 1 has substantially simplified the line search
subproblem (step 3). The proper parameters �(k) and �(k), (�), are
determined automatically in a single calculation. ALGORITHM 1
has a linear computational complexity O(NF), where NF is
a number of free parameters. The necessity of keeping the track of
the previous search direction s(k�1) in conjugate gradient techni-
ques leads to the linear memory requirements O(NF) of ALGO-
RITHM 1. Despite the simplicity of the line search subproblem,
ALGORITHM 1 is convergent with superlinear convergence rates
[56]. The superlinear convergence rates are established under the
assumption that second and higher order terms of Taylor expan-
sion of the objective function E around the optimum point are
negligible for convergence of the sequence of points {u(k)}k gene-
rated by ALGORITHM 1.

ALGORITHM 1 is demonstrated in Fig. 3. ALGORITHM 1
(charts b) and c)) clearly converges substantially more smoothly

2E(u(k)) � E(u*)
���
s(k�1)2 � �E(u(k))2

E(u*)
���
s(k�1)2 � �E(u(k))2

a
���
s(k�1)2 � �E(u(k))2

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

a)

b)

c)

x

y

x

x

y

y

Fig. 3 Comparison of optimization progress between ALGORITHM 1
(chart b) (constant � = 0.1) and c) (adjustable �, �)) and BP with

momentum (� = 0.3, � = 0.1) (chart a)) on quadratic function f(x, y) =
= 0.5x2 + 3y2 + xy from the starting point [-7,-7]. ALGORITHM 1 had
setting: E(u*) = 0, a = 1. Stopping criterion was the value f(x, y) � 0.1.
It is evident that the progress of ALGORITHM 1 is smoother and faster

than BP with momentum.

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

46 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

to the optimum point than the conventional conjugate gradient
method (chart a)) having a constant step length and momentum.

5.1 Simulations

In this subsection the effectiveness of the algorithms is prac-
tically demonstrated on five tasks represented by the following
data sets: Lenses [48], Glass, Monks 1 [58], Monks 2 [58], and
Monks 3 [58]. The presented algorithms were applied to training
various MLP networks to perform tasks given by five, the above
mentioned, data sets. Neural network’s performance was optimiz-
ed according to the mean square error. The stopping criterion was
the value of the expected error.

In the case of the Lenses data set [48], a neural network had
configuration 4–3–1 with sigmoidal hidden units. Expected error
was set to 5 � 102. In the Glass problem, a network was configured
as: 9–5–1 (sigmoidal hidden units) and the expected error was
equal to 0.35. Finally, for Monks 1, 2, and 3 problems [58]
a neural network structure was set as: 6–3–1 (sigmoidal hidden
units), and the expected error was equal to 0.103. Network’s
weights were initialized randomly in the interval � �0.1, 0.1 �,
which corresponded to the steepest region of the sigmoidal
transfer function of the hidden units. The parameter a was equal
to 1. In case network’s error did not converge to the value less
than or equal to the expected error within 20000 cycles, the
training process was terminated. It is interesting to note that
additional stopping condition of maximum 20000 cycles was
practically applied only to the BP employing standard first order
techniques. ALGORITHM 1 always converged.

The experiments were performed with the value of the step
length (learning rate) for BP corresponding to the best results of
BP as reported in [51] (in Monks 1 case � � 0.8, and for all other
data sets � � 0.9). The momentum term ranging from 0.1 to 0.7
in 0.1 increments was then applied. BP with the momentum term
and the best value of step length (denoted in further text as BPM)
was compared to ALGORITHM 1 with constant momentum term
(see results in Table 1), and with automatically adjustable momen-
tum term (see Table 2). Values of the constant momentum term
in ALGORITHM 1 were set equal to the values of the momentum
term in BPM. For a given setting of learning rate and momentum
term the simulations were run 10 times for different randomly ini-
tialized weights in the interval � �0.1, 0.1 �. Percentual conver-
gence speed increases were calculated in order to simplify the
comparison. Hence the values in Table 1, and 2 represent ten-run-
averages. Criterion for comparison of the convergence speed was
the number of cycles required to decrease the mean square error
E of a neural network below the value of the expected error.

It is clear, from Table 1, and 2, that the proposed algorithm (that
is, ALGORITHM 1) converged substantially faster than the stan-
dard techniques. As previously mentioned, ALGORITHM 1 con-
verged each time, whereas BPM for some initial setting of weights
and parameters �, � could not achieve convergence even after
20000 cycles. This accounts for higher stability of ALGORITHM 1.

Table 1: Comparison of ALGORITHM 1 (constant momentum) and
BPM with setting of constant learning rate that corresponded to the
best obtained results of BP. Momentum term was set from 0.1 to 0.9
in 0.1 increments, and kept constant for both ALGORITHM 1 and
BPM. ALGORITHM 1 had the following setting: E(u*) � 0, a � 1.
Values in the table represent ten-run-averages of percentual conver-
gence speed increase of ALGORITHM 1 over BPM. Convergence
speed was compared in terms of cycles required to reach a given value
of the expected error.

Table 2: Comparison of ALGORITHM 1 (adaptable momentum) and
BPM with learning rate setting corresponding to the best obtained
results of BP. Momentum term setting varied from 0.1 to 0.9 in 0.1
increments. ALGORITHM 1 used the setting: a � 1. Values in the
table stand for ten-run-averages of percentual convergence speed inc-
rease of ALGORITHM 1 over BPM. Convergence speed comparison
was made in terms of number of cycles necessary to decrease the
network’s error below the value of the expected error.

6. Structural Adaptation

The progress of a training algorithm can be seen as
a movement in a space with principal coordinates defined by the
singular vectors. The error surface increases most rapidly in the
direction of a vector corresponding to the maximum singular
value and most slowly in a direction of a vector corresponding to
the minimum singular value. The singular values give partial
information about the determination of the next step of an
algorithm. They provide a relative measure on the direction and
the proportion of the movement. Since the singular value
decomposition is computationally expensive task it is desirable to
approximate location of the singular values given by the spectral
radius estimate [31].

Spectral Radius Estimate
Let A � Mm,n. For the spectral radius of singular values holds,

�(A) � min{�′(A), �″(A)} ,

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVR

Lenses (� = 0.9) 43.99 19.65 7.03 44.49 93.12 94.46 95.14 56.84

Glass (� = 0.9) 54.4 52.05 47.76 44.43 39.02 35.43 29.05 43.18

Monks 1 (� = 0.8) 57.37 51.73 40.42 39.7 49.38 85.07 90.95 59.23

Monks 2 (� = 0.9) -12.41 -28.49 4.55 58.95 86.87 95.18 96.07 42.96

Monks 3 (� = 0.9) 40.91 34.33 31.97 58 82.07 87.39 89.7 60.62

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVR

Lenses (� = 0.9) 51.23 20.5 10.14 46.95 93.18 95.15 97.13 59.18

Glass (� = 0.9) 55.35 53.38 48.93 45.97 41.35 37.89 30.25 44.73

Monks 1 (� = 0.8) 59.37 53.25 43.19 41.53 53.68 87.79 93.25 61.72

Monks 2 (� = 0.9) 1.45 -3.47 14.33 60.78 87.96 97.31 97.93 50.89

Monks 3 (� = 0.9) 42.35 40.37 35.96 59.97 83.47 89.93 92.23 63.47

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

47K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

where

�″(A) � min�max
i ��

m

j�1
aij	, max

j ��
n

j�1
aij	� ,

�′(A) � min�max
r ���

m

c��1��
n

j��1�ar�j �� a�jc�	,

max
c ���

m

r��1��
n

j��1�ar�j �� a�jc�	� .

“r“ and “c“ denote row and column indices of AAT, respectively.

How the estimates �″ (25) and �′ (25) typically work in prac-
tice is shown in Fig. 4. The task depicted in Fig. 4 is training an
MLP neural network with the configuration 2–2–1 on the XOR
problem. Network’s connections were initialized by the exponen-
tial series with base 0.9 and 0.5 for hidden-to-output and input-to-
hidden weights, respectively. Steepest descent version of BP with
the constant learning rate 0.9 was used. Training was terminated
when the mean square error decreased below 10�2. The actual
spectral radius � in Figure 4 was obtained by the singular value

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Cycles

Sp
ec

tra
l

R
ad

iu
s

Cycles

Sp
ec

tra
l

R
ad

iu
s D

iff
er

en
ce

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000

Cycles

Sp
ec

tra
l

R
ad

iu
s

a) b)

c) d)

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

Cycles

Sp
ec

tra
l

R
ad

iu
s

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000

1

2

3

1

2

3

1
2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

ρ ρ

ρ

’�’’�

ρ
ρ
ρ
’�
’’�

ρ
ρ

’� ρ
ρ

ρ

’�
’’�

ρρ’’�

ρ

ρ
ρ’�
’’�

ρ

Fig. 4 Typical behavior of the estimates of spectral radiuses �′ and �″. The spectral radius � was obtained by singular value decomposition.
A training task for MLP neural network with the configuration 2–2–1 was the standard benchmark XOR. Chart a) shows the values of �, �′, and �″

at each cycle of training. Chart b) displays the differences �″ � �′, �′ � �, and �″ � �. Details of the relationship between � and �′ is shown
in chart c). Analogously, the values of the estimate �″ in relation to � are depicted in chart d).

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

48 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

decomposition. Note that the XOR problem serves as a testbed for
essential linear non-separability. The training set contains four
patterns T � {[(0, 0), 0]; [(0, 1), 1]; [(1, 0), 1]; [(1, 1), 1]}. A suf-
ficient three layer network configuration incorporates two input
units, two hidden units, and one output unit.

The reason for having two different expressions for spectral
radiuses of singular values and taking minima of them follows
from the need for more precise location and from the nature of
the optimization techniques. When the first order optimization
procedure is relatively far from the equilibrium point, it is more
likely that �″ gives more precise estimate of the spectral radius
because the derivatives will be higher in value. However, when the
algorithm converges (in an ideal case to 0) then also the first
order derivatives should converge, possibly to 0, and thus become
smaller. In this case, when the derivatives are lesser than 1, the
expression �′ may locate the singular values within a smaller
interval.

As it can be seen from the charts a) and b), the estimate �′
was more precise when the network was relatively far from the
optimum point. Once the attractor basin was reached, the
estimate �″ showed slightly higher precision than �′. The reason
for this is the difference of the slopes of the error surface. After
the initial progress (approximately 40 cycles) the network was
progressing on the flat region of the error surface for almost 1200
cycles. Surface flatness is indicated by small gradient values.
Therefore, the estimate �′ had smaller values than �″. As the
algorithm reached the attractor basin, the network started to
progress on a sharper slope of the error surface. The gradients
were higher. Thus the estimate �″ had smaller values than �′.
When the algorithm converged to the optimum point, both �′ and
�″ converged to almost the same values (see chart a) and also
differences in chart b)). Specifics of each estimate �′ and �″ in
relation to � are depicted in charts c) and d).

Taking into account the static and dynamic importance of the
weight connections in the network the authors propose the
measure of use of the network’s potentials (to progress) at each
step of a training algorithm as,

PM � �
�(

1

JE)
� �

N

1

F

� �
0

ul�u ul �
Np

p�1
�
∂
∂
E

u

(p

l

)

� , (25)

where E stands for some specific error function, ul is the l–th free
parameter of a network, and �(JE) is the estimate of a spectral
radius of the error matrix JE. The expression (25) represents the
overall average performance of a network.

The value of the estimate of a spectral radius cannot exceed
the minimum of the maxima of row and column sums of the ele-
ments in an error matrix for an artificial neural network. That is,
the largest singular value �max lies within the interval specified by
the matrix measures (or norms) such as column or row l1 norms.
Regarding search directions, a network’s progress in each dimen-
sion is limited by the value of the estimate of a spectral radius. The
sum of column elements of a specific matrix (depending on error
function) represents how far a network will move in a particular

dimension. Hence, the network in any dimension cannot progress
more than the estimate shows. Considering the static relevance of
weight ul � u, given by its real value (ul � �), multiplied by the
dynamic relevance of the connection represented by the sum of

the gradients for each pattern sample ��
NP

p�1
�
∂
∂
E

u

(p

l

)

�	 and then

scaling the multiplication with respect to the maximum progress
formulated by the estimate of a spectral radius �, the overall
average performance of a network is obtained at each iteration
(25). From (25) immediately implies that the individual perfor-
mance of each connection is given as,

Ipmul
� �

�(

1

JE)
� ul �

Np

p�1
�
∂
∂
E

u

(p

l

)

� . (26)

Similarly the maximum performance of a network during
training can be measured,

PMm � �
�(

1

JE)
� max

ul�u ul �
Np

p�1
�
∂
∂
E

u

(p

l

)

� . (27)

The relevance and importance of the above measures is
illustratively demonstrated on the standard benchmark task XOR.

First, the relevance of measures (25) and (27) is demonstra-
ted. To obtain a closer look at the behavior of a training procedure
the auxiliary expressions are evaluated,

Dpm � �
0

ul�u ul �
Np

p�1
�
∂
∂
E

u

(p

l

)

� , (28)

Dpmm
� max

ul�u ul �
Np

p�1
�
∂
∂
E

u

(p

l

)

� . (29)

Configuration of the network was 2-2-1 and the weight
connections were initialized by the exponential series with base
0.9 for the hidden-to-output weights and 0.5 for the input-to
hidden weights. A batch mode of BP training with a constant
learning rate equal to 0.9 was used. Simulation charts are shown
in Figure 5 and Fig. 6. Fig. 5 shows the performance of a network
according to the performance measure (25) and Figure 6 depicts
the maximum performance chart for a network according to the
measure (27). Both figures clearly indicate four distinguishable
phases of a training procedure.

The first phase depicts the initial progress of a network and
sudden stagnation. The error E decreased in a few starting
training cycles and then stabilized. This phase is indicated by
a rapid decline of both the average performance PM (25) and the
maximum performance PMm (27), which exactly reflects the fact
that the network was not progressing, since it has reached the flat
surface of an error landscape. The estimate of a spectral radius
�(JE) had lightly fluctuated around 1 and then stabilized. Detail
of this phase is given in upper charts of Fig. 5 and Fig. 6. It shows
first 40 cycles of a training procedure. Low levels of Dpm and Dpmm

measures underline the fact that the network reached a flat region
of error surface which is, according to the error E, positioned
quite high from the minima.

The second phase shows slow progress of a network on a flat
region of an error surface. The error E changes very little. The

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

49K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

performance of a network (by means of the measures PM and
PMm) is very low. The estimate of a spectral radius �(JE) based on
l1 norms is relatively stable and high. High values of the error
E and the estimate of a spectral radius �(JE), and low values of the
expressions Dpm and Dpmm

imply that the flatness of an error surface
is caused by sign oscillations of the weight gradients for different
patterns.

In the third phase, the network passed over the at region of an
error surface and reached the basin of attraction of an attractor
point. It started to converge toward the minimum. The error
E smoothly decreased and according to the performance
measures PM and PMm the network indicates rapidly increased
progress. Declining estimate of a spectral radius �(JE) and rising
values of Dpm and Dpmm

indicate that the network balanced its
computational resources by eliminating the oscillations of
gradients for different training samples. A sharp rise of Dpm and
Dpmm

indicates that the network progressed on a sharp slope of an
error surface.

The fourth phase shows the smooth convergence of a network
toward the minimum point. Error nicely decreases and the
network progresses at constant rate, as indicated by the average
performance measure PM. The maximum performance PMm

smoothly stabilizes. The stable convergence ratio is also nicely
indicated by stabilization of the estimate of a spectral radius as
well as measures Dpm and Dpmm

. Low values of maximum
gradients (Dpmm

) underline the reach of the optimum point.

6.1 Structural Adaptation Utilizing Learning
Performance Measures

The relevance and importance of the derived performance
measures for structural modifications of a network, particularly
pruning, is shown. As previously mentioned, the expression (26)
represents a combination of static and dynamic importance of
a specific weight connection in a structure of a network. Thus it
can be used for detecting less important structural elements
suitable for pruning. The use of the measure (26) for pruning is
illustratively depicted again on an example of the XOR problem
(see Fig. 7).

An overdetermined network structure with configuration 2-3-1
was generated. The initial values of the weights were set in the
same way as in the previously mentioned simulation. A batch
mode of BP training procedure with the constant learning rate 0.9
was used. It can be seen that the original network structure (2-3-1)
was able to converge approximately after 1900 cycles (to be
precise 1896 cycles) to the point where the error E � 10�2. The
evidence that the network converged is shown in upper-left chart
of Fig. 7. After approximately 1000 cycles the network started to
converge. The performance measure PM as well as Dpm rose. The
estimate of a spectral radius started to decline. And from around
cycle 1400 the network was progressing at a constant rate, as
indicated by the stabilized curve of the PM measure.

When the network reached cycle 111 the maximum perfor-
mance measure PMm indicated minimum value (1.229526 � 10�3).
At this point, since the progress was very slow, the network was

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500 2000Cycles

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 10 15 20 25 30 35 40

Cycles

2 3

4

1

2

3

4

1

2

3

4

E

ρ(JE)

Dpm

PM

Phase:
1 2 3 4

Fig. 5 Training behavior of the network with configuration 2-2-1 for the
XOR problem according to the measures PM and Dpm. Four training
phases could be distinguished. The detail of the first phase is given in
the upper chart. The network converged to the point where E � 10�2

after 2114 cycles. A batch mode of BP training used constant learning
rate equal 0.9.

0

0.2

0.4

0.6

0.8

1

1.2

0 500 1000 1500 2000Cycles

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40

Cycles

1

2 3 4

1

2

3

4

1

2

3

4

E

D

PMm

pmm

Phase:
1 2 3 4

ρ(JE)

Fig. 6 Behavior of the network with configuration 2-2-1 according to the
measures PMm and Dpmm

during training to perform the XOR task.
Similarly as in the previous figure there are four distinguishable phases.

The first phase is shown in detail in the upper chart. The error
E � 10�2 was reached after 2114 cycles for a batch mode of BP

training with constant learning rate 0.9.

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

50 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

suitable for pruning. The individual performance measures (26)
of hidden-to-output weights were evaluated. It was found that at
the cycle=111 the individual performance measure for the hidden-
to-output weight w3 was extremely low (1.5993 � 10�5), which was
about ten times less than that for the hidden-to-output weight w2

(1.20916 � 10�4). The individual performance measures for the
hidden-to-output weights w2 and w3 were at the same level (ap-
proximately ten times higher than Ipmw3

). Hence the suitable can-
didate for pruning was the weight w3. The bottom-left chart in
Figure 7 shows the training behavior of the network after pruning

Cycles

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800
Cycles

Cycles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
W

W1

2

3

W
W

1

2

W1 W

Original
Network
Structure

w23

Training the original network

Training after elimination of the weight Training after elimination of the weight .

Structure after pruning
the weight .

Structure after pruning
the weight w .

w2w3.

1

2

3

4

1

2

3
4

1

2

3

4

1

2 3 4

E

PM

Dpm

Pruning at
Cycles=111

ρ(JE)

Fig. 7 The effect of pruning the original network with configuration 2-3-1 on training behavior. The pruning criterion was Ipmul
. Top-left chart

depicts the training behavior of the original network (2-3-1). Top-right part shows the modification of the structure after elimination of the hidden-
to-output weight w3 (left) and after elimination of the hidden-to-output weight w2 (right). Bottom-left chart shows the training behavior of the network
after pruning the hidden-to-output weight w3 (the weight with low individual performance measure). Bottom-right chart shows the training behavior
of the network after pruning the hidden-to-output weight connection w2 (the weight with high individual performance measure). The pruning point

for the original network structure was cycle 111.

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

51K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

the hidden-to-output weight w3. Six hundred cycles after pruning
the weight w3 the network started to converge (see the charts of
measures PM, �(JE), and Dpm). And 1000 cycles after pruning the
network was progressing at almost constant rate (see the curve
PM). At cycle 1777 after pruning the network reached a state
where the error E was less than 10�2.

It is also important, on the other hand, to observe the beha-
vior of a network when the weight with a high individual perfor-
mance measure (26) was pruned. The bottom-right chart of
Figure 7 shows the training behavior of the network after pruning
the hidden-to-output weight connection w2, that is, the connection
with high individual performance measure (26). It is clear (from
the bottom-right chart in Figure 7) that the network after pruning
the hidden-to-output weight w2 was not able to converge even after
5000 cycles. Approximately 2000 cycles after pruning the perform-
ance PM of the network slightly rose, however, after reaching the
maximum point at cycle=2995 (2.036367 � 10�2) the perform-
ance PM declined. The estimate of a spectral radius �(JE)
dropped, but again stabilized at a relatively high level (around
0.7). The measure Dpm rose, but then decreased. From the curves
of �(JE), PM, and Dpm it can be concluded that the network
reached another relatively flat region of the error surface.
Generally, the performance of the network was very low during
the whole period of 5000 cycles after pruning the hidden-
to-output weight w2. This underlines the relevance of the indivi-
dual performance measure (26) as well as the other measures (25)
and (27).

It is clear from the above and from (25), (26), and (27) that
the essential reference ground for comparison of the combined
static and dynamic importance of the network elements is the
estimate of a spectral radius �(JE). It is the only suitable reference
ground directly implied from the nature of the first order
optimization procedures. Furthermore, it has three remarkable
properties:

It is dynamic. The estimate of a spectral radius �(JE) dynamically
changes according to the state of a training procedure. Thus
it represents the most suitable dynamic reference ground at
every step of training. This naturally overcomes the problems
of choosing the right reference value, which is essential for
regularization based approaches (e.g. choosing the right pre-
assigned parameter u0 in the weight elimination procedure).
Most likely there is a very small class of problems which satis-
fies the optimum condition for constant reference ground.

It is sensitive. The estimate of a spectral radius �(JE) is sensitive
enough to reflect the occurrences leading to the progress of
a network.

It can be manipulated. Structural modifications and sample selec-
tion can influence the values of the estimate of a spectral radius
�(JE) so as to maximize the expressions (25), (26), and (27).

The third point, the ability to manipulate the estimate of
a spectral radius �(JE), is of primary interest in this study.
Although there have been a variety of modifications of first order
optimization techniques and their implementation in the field of

artificial neural networks, a deterministic theoretical analysis is
still lacking. This is true particularly for cases where the training
algorithms incorporate dynamic structural changes. Hence, it is
the researcher’s intention to shed some light onto this specific
area of a neural network field.

7. Rule Extraction

The rule extraction problem from neural networks is
addressed in its principal form. That is, given an arbitrary three
layer artificial neural network trained on particular data extract
the rules that reflect the network’s data classification as correctly
as possible. Note that this is general and essential principle of rule
acquisition. The only choice of three layer neural networks is due
to their universal approximation abilities. Methodology introduc-
ed here is independent of rule types, network types, and learning
strategy. Hence, there is no assumption of any a priori knowledge
implementation into a neural network.

Given a mapping F of three layer artificial neural network
trained on the classification task described by a training set T, the
primary interest is to derive the rules that classify the data as
correctly as neural network. This is the underlining problem of
rule extraction from trained neural networks. Sometimes there
must not be the solution to this problem, however, the
classification rules describing data with certain accuracy can still
be obtained. The availability of solution to rule extraction
problem is stated in the following.

Crisp Rule Extraction
Let bu be a set bu � {1, 0, 1} (or bu � {1, 1}). Let F � FHO � FIH

be a mapping of a nonlinear neural network with structure NI �
� NH � NO such that input-to-hidden weights vij and hidden-to-
output weights wjk are real valued parameters, vij
 wjk � �,
and NH � [logbu � {0}(NO)]. If there exists a set of vectors
{cr(1), …, cr(NP)} such that,

[wT
k � F(p)

IH] � [bwT
k � (F ′(p)

IH � cr(p))] ,

F ′(p)
IH � f(bv, x(p)) ; cr(p) � {cr(1), …, cr(NP)} ,

where bwk � (bw1k, …, bwNHk), bwjk � bu, and bv � (bv11, …
…, bvNINH

), bvij � bu, there exists the representation of the
network’s mapping in form of the rules,

IF (

i�1,…,NI

LOx(k)
i ε � x(k)

iS , x(k)
iE �) THEN CLSk , (30)

where k � 1, …, NO, LO is either void or logical operator of nega-
tion �� , and ε is either � or � . The rules (30) classify the pat-
terns [x(p), y(p)] � T, p � 1, …, NP, as correctly as neural network.

General proof of the above statement is provided in [38].
Practical implications of the constructive proof lead to the
methodology for deriving the rules from arbitrary three layer
neural network. The methodology is applicable even in the cases

max
k�1,…, NO

max
k�1,…, NO

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

52 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

when the theoretical conditions are not strictly satisffed. It can be
described in the following 5 steps.
1) Code the weight vectors wk , vj into trinary vectors bwk, bvj

according to the shortest Euclidean distance (min d(wk, bwk),
and min d(vj , bvj)).

2) Based on the transferred weight vectors bwk generate the
initial rules,

IF (

i�1,…,NH

LO F (k)
IHj) T H E N CLSk , (31)

such that LO is void if bwjk � 1 and LO is �� if bwjk � �1.
Note that if bwjk � 0, the corresponding F (k)

IHj
is eliminated.

3) Expand each F (k)
IHj

in (31) according to the trinary vectors bvj

into the form,

F (k)
IHj

�

i�1,…,NI

x(k)
i ε � x(k)

iS , x(k)
iE � , (32)

such that ε is � if bvij � 1 and ε is � if bvij � �1. Again, if
bvij � 0 the corresponding x(k)

i is eliminated.

4) Simplify the expanded rules by merging the same statements
and eliminating contradictions. Then present the rules of the
form,

IF (

i�1,…,NI

LOx(k)
i ε � x(k)

iS , x(k)
iE �) T H E N CLSk . (33)

5) Find appropriate intervals � x(k)
iS , x(k)

iE � and substitute them
into (33). Finally, generate the resulting rules.

As it can be seen in step 4) the above described methodology
for rule extraction contains mechanism of optimizing the rules.
This allows obtaining relatively simple rules even if the
network’s structure was overdetermined for a given classification
task. In other words, the structural redundancies of a neural
network can partially be eliminated when finalizing the rules. This
feature has an important practical value since the network’s struc-
tures may not always be optimal for a given classification task.
The simplification mechanism will practically be demonstrated in
the next section.

Important part is also finding the appropriate intervals
� x(k)

iS , x(k)
iE � in the step 5). If the conditions of the theorem are

satisfied and rule includes the term x(k)
i � � x(k)

iS , x(k)
iE �, then the

intervals can be obtained directly by tracing the min/max values
of input coordinates for given class CLSk . If the rule contains the
term x(k)

i � � x(k)
iS , x(k)

iE � and the conditions of the theorem are
satisfied, again the intervals are obtained directly by eliminating
the intervals of input coordinates for classes CLSj , j 	 k.
However, the functionality of the methodology extends even to the
cases where the conditions of the theorem do not strictly hold.
Then the step 5) can be slightly more complicated. The
approaches for obtaining the intervals (or membership functions)
can vary [59], [60]. From the practical experience we can
recommend the method of dichotomizing the boundaries for
conflict patterns.

7.1 Simulations

The effectiveness of the methodology described in the previ-
ous section is demonstrated on the IRIS data set [49]. First, the
case of rule extraction for optimized structure of a network is pre-
sented and in the second case the rule simplification mechanism
is demonstrated on the overdetermined network structure.

Structure modifying training techniques play an important
role in rule extraction approaches. Essentially, they lead to
simpler initial rules (31) after the first three steps in the proposed
methodology. In the first experimental task a structure modifying
training technique based on performance measures was used [31].
Back propagation learning was terminated when the expected
mean square error was less than 0.057. Resulting network, after
transforming the original weight vectors into trinary vectors, had
3–2–4 structure. The transformation of weight vectors was as
follows.

w1 � [0, 2.72] → [0, 1]
w2 � [0.51, �0.94] → [1, �1]
w3 � [0.65, �1.74] → [1, �1]
v1 � [0, 0, 2.15, 0] → [0, 0, 1, 0]

v2 � [0, 0, 0, �1.7] → [0, 0, 0, �1]

According to the proposed rule extraction methodology, from
the network’s structure the following rules immediately imply.

IF (x(1)
4 � � x(1)

4S , x(1)
4E �) T H E N CLS1 (34)

IF (x(2)
3 � � x(2)

3S , x(2)
3E �
 x(2)

4 � � x(2)
4S , x(2)

4E �)
T H E N CLS2 (35)

IF (x(3)
3 � � x(3)

3S , x(3)
3E �
 x(3)

4 � � x(3)
4S , x(3)

4E �)
T H E N CLS3 (36)

Since the above rules cannot be further simplified the next
step is only to determine the appropriate intervals. By detecting
the min/max values of input coordinates for different classes the
following intervals are obtained.

x(1)
4 � �1.0, 2.5� ; x(2)

3 � �3.0, 5.1� ; x(2)
4 � �1.0, 1.8� ;

x(3)
3 � �4.5, 6.9� ; x(3)

4 � �1.4, 2.5�

Inserting these intervals into the rules (34), (35), (36) leads
to 94.6 % correct classification (142 correctly classified patterns
out of 150). Dichotomizing the boundary of the input coordinate
x4 for conflict samples results in modification of x(2)

4 and x(3)
4

intervals: x(2)
4 � �1.0, 1.7� , x(3)

4 � �1.35, 2.5� . Substituting
these boundaries into (35) and (36) gives 97.3 % correct
classification (146 correctly classified exemplars out of 150).

The second simulation example demonstrates the rules sim-
plification mechanism. An overdetermined network with struc-
ture 4-3-3 was trained using back propagation with constant
learning rate 0.7 until the expected mean square error was less

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

53K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

than 0.057. The following weight vectors and their codified trinary
vectors were obtained.

w1 � [0.02, �0.007, 1.003] → [0, 0, 1]
w2 � [1.1, 0.71, �1.28] → [1, 1, �1]

w3 � [�1.31, 1.03, 1.123] → [�1, 1, 1]
v1 � [1.69, 2.0, �2.68, �3.29] → [1, 1, �1, �1]

v2 � [�0.29, �0.46, 0.94, 0.81] → [0, 0, 1, 1]
v3 � [0.73, 1.68, �3.36, �1.85] → [1, 1, �1, �1]

It can clearly be seen that the connectivity of the output units
O2 and O3 to the hidden units H1 and H3 leads to logical
contradictions in derived rules. Then by principle of eliminating
the contradictions and redundant 0-connections the simplified
structure is obtained. The simplified structure leads to the same
rules for classes CLS2 and CLS3 as (35) and (36). The only rule
which is different and slightly more complicated is the rule for
class CLS1.

IF (

i�1, 2

x(1)
i �� x(1)

iS , x(1)
iE �

i�3, 4

x(1)
i � � x(1)

iS , x(1)
iE �) T H E N CLS1 (37)

By substituting the same intervals as in the previous case for
the rules classifying the classes CLS2, CLS3, and the intervals:
x(1)

1 � �4.3, 5.8� , x(1)
2 � �2.3, 4.4� , x(1)

3 � �3.0, 6.0� ,
x(1)

4 � �1.0, 2.5� , into the rule (37), it is again obtained 97.3 %
correct classification.

Note that in this case the network’s structure was highly
redundant. The rule simplification mechanism was able to elimi-
nate more than 57 % of unnecessary rule terms (or connections)
which substantially clarified the final rules.

8. Conclusions

The article introduced a neural network based IAS that incor-
porates all the essential features of adaptability required by wide

range of communication technologies. Novel and theoretically
consistent approach allowed effective operation and dynamic
interlink of modules that have been formerly treated as separate
subdomains. The presented IAS is able to appropriately select
learning instances, adapt its parameters and structure. Moreover,
the system includes a rule extraction module that could serve as
a logical interface between IAS and expert systems. IAS utilizes
first order optimization techniques with superlinear convergence
rates. First order optimization is sufficiently fast and computa-
tionally inexpensive - with linear computational complexities.
Thanks to the speed and computational inexpensiveness of adapt-
able techniques the system can adapt fast even on large number of
training data. Additional advantage of the presented concept is
that adaptability at parametric, structural, and interface levels is
simultaneous and dynamic. The kernel of the system, that is
neural network, can automatically at each iteration of adaptation
select different number of training exemplars, adjust the learning
parameters such as learning rate and/or momentum term, and
also appropriately alter the structure in order to reach the
optimum learning performance. After completing the adaptation,
the system is able to interpret the learned task by logical forma-
lism such as crisp rules. This feature may have indispensable value
in expert system applications.

This research was partially funded by the Hori Foundation for
Promotion of Information Sciences. The authors would like to
thank Dr. Naohiro Toda of Aichi Prefectural University for his
valuable comments. Requests for reprints should be addressed to
Professor Shiro USUI, Department of Information and Computer
Sciences, Toyohashi University of Technology, Hibarigaoka,
Toyohashi 441-8580, Japan.

Reviewed by: V. Olej, R. Jarina

Nomenclature

NI number of input units
N0 number of output units
NH number of hidden units
NF number of free parameters of network
NP cardinality of training set
T training set
x input vector
y output vector
E objective (or error) function for a

neural network
F mapping of MLP network
FHO hidden-to-output submapping
FIH input-to-hidden mapping
fj nonlinear sigmoidal transfer function

of the j-th hidden unit

� real space
�NI NI dimensional real space (input space)
�NH NH dimensional real space (hidden

space)
�NO NO dimensional real space (output

space)
wkl hidden-to-output weight connection,

from the k-th hidden unit to the l-th
output unit, or input-to-output weight
connection, from the k-th input unit to
the l-th output unit

w vector of hidden/input-to-output weights
bw binary/trinary hidden/input-to-output

weight vector
vij input-to-hidden weight connection, from

the i-th input unit to the j-th hidden unit
v weight vector of input-to-hidden weights

bv binary/trinary input-to-hidden weight
vector

�h threshold weight vector of hidden units
�O threshold weight vector of output units
u set of free parameters of neural network
u(0) set of free initial parameters of neural

network
ul the l-th free parameter of a neural

network
�(n) value of the learning rate at the n-th ite-

ration
�(n) value of the momentum term at the n-

th iteration
� spectral radius estimate

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

54 � K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0

Literatúra - References

[1] SHANNON, C. E., WEAVER, W.: The Mathematical Theory of Communications. University of Illinois Press, University of
Illinois, 1949.

[2] ARBIB, M. A. (Editor): The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, Massachusetts, 1995.
[3] BAUM, E., HAUSSLER, D.: What size of network gives valid generalization. Neural Computation, 1(1):151–160, 1989.
[4] HWANG, J., CHOI, J. J., SEHO, O., MARKS II, R. J.: Query learning based on boundary search and gradient computation of

trained multilayer perceptrons. In Proceedings of IJCNN’90, pp. 57–62, San Diego, 1990.
[5] BAUM, E. B.: Neural net algorithm that learn in polynomial time for examples and queries. IEEE Trans. on Neural Networks,

2(1):5–19, 1991.
[6] R. Battiti. Using mutual information for selecting features in supervised neural net learning. IEEE Trans. on Neural Networks,

5(4):537–550, 1994.
[7] CACHIN, C.: Pedagogical pattern selection strategies. Neural Networks, 7(1):175–181, 1994.
[8] MUNRO, P. W.: Repeat until bored: A pattern selection strategy. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors,

Advances in Neural Information Processing Systems 4 (Denver), pp. 1001–1008, San Mateo, 1992. Morgan Kaufmann.
[9] FLETCHER, K.: Practical Methods of Optimization. John Wiley & Sons, Essex, 1987.

[10] WOLFE, P. Convergent conditions for ascent methods. SIAM Review, 11:226–235, 1969.
[11] POWELL, M. J. D.: A view of unconstrained optimization. In L. C. W. Dixon, editor, Optimization in Action, London, 1976.

Academic Press.
[12] AL-BAALI, M., FLETCHER, R.: An ecient line search for nonlinear least squares. Journal of Optimization Theory and

Application, 48(3):359–377, 1986.
[13] JACOBS, R. A.: Increasing rates of convergence through learning rate adaptation. Neural Networks, 1:295–307, 1988.
[14] T. P. Vogl, J. K. Manglis, A. K. Rigler, T. W. Zink, and D. L. Alkon. Accelerating the convergence of the back-propagation method.

Biological Cybernetics, 59:257–263, 1988.
[15] PFLUG, Ch. G.: Non-asymptotic confidence bounds for stochastic approximation algorithms. Mathematic, 110:297–314, 1990.
[16] TOLLENAERE, T., SuperSAB: Fast adaptive back propagation with good scaling properties. Neural Networks, 3:561–573, 1990.
[17] DARKEN, C., MOODY, J.: Towards faster stochastic gradient search. In J. E. Moody, S. J. Hason, and R. P. Lipmann, editors,

Proceedings of the Neural Information Processing Systems 4 (Denver), pp. 1009–1016, San Mateo, 1992. Morgan Kaufmann.
[18] OCHIAI, K., TODA, N., USUI, S.: Kick-Out learning algorithm to reduce the oscillation of weights. Neural Networks,

7(5):797–807, 1994.
[19] PERANTONIS, S. J., KARRAS, D. A.: An efficient constrained learning algorithm with momentum acceleration. Neural

Networks, 8(2):237–249, 1995.
[20] BECKER, S., LEE CUN, Y.: Improving the convergence of back-propagation learning with second order methods. In D. Touretzky,

G. Hinton, and T. Sejnowski, editors, Proceedings of The 1988 Connectionist Models Summer School (Pittsburgh), pp. 62–72,
N.Y., 1989. Wiley.

[21] BISHOP, C.: Exact calculation of the Hessian matrix for the multilayer perceptron. Neural Computation, 4(4):494–501, 1992.
[22] YU, X., LOH, N. K., MILLER, W. C.: A new acceleration technique for the backpropagation algorithm. In Proceedings of The

IEEE International Conference on Neural Networks, pp. 1157–1161, San Francisco, 1993.
[23] YU, X., CHEN, G., CHENG, S.: Dynamic learning rate optimization of the backpropagation algorithm. IEEE Transactions on

Neural Networks, 6(3):669–677, 1995.
[24] HINTON, G. E.: Connectionist learning procedures. Technical Report CMU-CS-87-115, Carnegie-Mellon University, 1987.
[25] WEIGEND, S. A., RUMELHART, D. E., and HUBERMANA, B. A.: Generalization by weight elimination with application to

forecasting. In R. P. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3,
pp. 875–882, San Mateo, 1991. Morgan Kaufmann.

[26] LECUN, Y., DENKER, J. S., SOLLA, S. A.: Optimal brain damage. In D. S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pp. 598–605, San Mateo, 1990. Morgan Kaufmann.

[27] HASSIBI, B., STORK, D. G., WOLF, G. J.: Optimal brain surgeon and general network pruning. In IEEE International
Conference on Neural Networks, pp. 293–299, San Francisco, 1993.

[28] CIBAS, T., SOULIÉ, F. F., GALLINARI, P., RANDYS, S.: Variable selection with neural networks. Neurocomputing, 12:223–248,
1996.

[29] GÉCZY, P., USUI, S.: Learning performance measures for MLP networks. In Proceedings of ICNN’97, pp. 1845–1850, Houston, 1997.
[30] GÉCZY, P., USUI, S.: Effects of structural adjustments on the estimate of spectral radius of error matrices. In Proceedings of

ICNN’97, pp. 1862–1867, Houston, 1997.
[31] GÉCZY, P., USUI, S.: Effects of structural modifications of a network on Jacobean and error matrices. Submitted to Neural

Networks, March 1997.
[32] TOWELL, G., SHAVLIK, J. W.: Extracting refined rules from knowledge-based neural networks. Machine Learning, 13:71–101, 1993.

C O M M U N I C A T I O N SC O M M U N I C A T I O N S

55K O M U N I K Á C I E / C O M M U N I C A T I O N S 2 / 2 0 0 0 �

[33] ANDREWS, R., DIEDERICH, J., TICKLE, A. B.: A survey and critique of techniques for extracting rules from trained artificial
neural networks. Knowledge-Based Systems, 8:373–389, 1995.

[34] KASABOV, N.: Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems. Fuzzy Sets and
Systems, 2:135–149, 1996.

[35] FU, L.: Rule generation from neural networks. IEEE Transactions on SMC, 24:1114–1124, 1994.
[36] GÉCZY, P., USUI, S.: Rule extraction from trained artificial neural networks. In Proceedings of ICONIP’97, pp.835–838,

Dunedin, 1997.
[37] GÉCZY, P., USUI, S.: Fuzzy rule acquisition from trained artificial neural networks. Journal of Advanced Computational

Intelligence (accepted), March 1998.
[38] GÉCZY, P., USUI, S.: Rule extraction from trained artificial neural networks. BEHAVIORMETRIKA, 26(1):89–106, 1999.
[39] GÉCZY, P., USUI, S.: Knowledge acquisition from networks of abstrast bio-neurons. In Proceedings of ICONIP’99, pp. 610–615,

Perth, 1999.
[40] HORNIK, K.: Multilayer feedforward networks are universal approximators. Neural Networks, 2:359–366, 1989.
[41] MHASKAR, H. N.: Neural networks for optimal approximation of smooth and analytic functions. Neural Computation,

8:164–177, 1995.
[42] GÉCZY, P., USUI, S.: A novel dynamic sample selection algorithm for accelerated learning. Technical Report NC97-03, IEICE,

pp. 189–196, March 1997.
[43] GÉCZY, P., USUI, S.: Sample selection algorithm utilizing Lipschitz continuity condition. In Proceedings of JNNS’97,

pp.190–191, Kanazawa, 1997.
[44] GÉCZY, P., USUI, S.: Dynamic sample selection: Theory. IEICE Transactions on Fundamentals, E81-A(9):1931–1939, 1998.
[45] GÉCZY, P., USUI, S.: Dynamic sample selection: Implementation. IEICE Transactions on Fundamentals, E81-A(9):1940–1947, 1998.
[46] GÉCZY, P., USUI, S.: Deterministic approach to dynamic sample selection. In Proceedings of ICONIP’98, pp. 1612–1615,

Kitakyushu, 1998.
[47] ARMIJO, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of Mathematics,

16(1):1–3, 1966.
[48] CENDROWSKA, J., Prism: An algorithm for inducing modular rules. International Journal of Man-Machine Studies, 27:349–370,

1987.
[49] FISHER, R. A.: The use of multiple measurements in taxonomic problems. Annual Eugenics,7(II):179–188, 1936.
[50] DASARATHY, B. V.: Nosing around the neighborhood: A new system structure and classification rule for recognition in partially

exposed environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1):67–71, 1980.
[51] GÉCZY, P., USUI, S.: Fast back-propagation with automatically adjustable learning rate. Technical Report NC97-61, IEICE, pp.

47–54, December 1997.
[52] GÉCZY, P., USUI, S.: Superlinear and automatically adaptable conjugate gradient training algorithm. Technical Report NC97-149,

IEICE, pp. 71–78, March 1998.
[53] GÉCZY, P., USUI, S.: On design of superlinear first order automatic machine learning techniques. In Proceedings of WCCI’98,

pp.51–56, Anchorage, 1998.
[54] GÉCZY, P., USUI, S.: Novel first order optimization classification framework. IEICE Transactions on Fundamentals,

Submitted(June), 1999.
[55] GÉCZY, P., USUI, S.: Superlinear conjugate gradient method with adaptable step length and constant momentum term. IEICE

Transactions on Fundamentals, Submitted(June), 1999.
[56] GÉCZY, P., USUI, S.: Universal superlinear learning algorithm design. IEEE Transactions on Neural Networks,

Submitted(February), 1999.
[57] FLETCHER, R., REEVES, C. M.: Function minimization by conjugate gradients. Comput. Journal, 7:149–154, 1964.
[58] WNEK, J., MICHALSKI, R. S.: Comparing symbolic and subsymbolic learning: Three studies. In R. S. Michalski and G. Tecuci,

editors, Machine Learning: A Multistrategy Approach, volume 4, San Mateo, 1993. Morgan Kaufmann.
[59] ALEFELD, G., HERZBERGER, J.: Introduction to Interval Computations. Academic Press, New York, 1983.
[60] DUDA, R. O., HART, P E.: Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.

