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1. Introduction

The supply optimization problems in transport management
are very frequent. Somebody optimizes delivery of goods, another
deals with public transport and a third considers the street network
for cars. Once we speak about flows of demand elements, and at
another time we see batches of them. Somewhere they optimize
routes and stops (i.e. the space layout) and somewhere else, the
time tables. The individual optimization problems usually differ
very strongly one from to another. The main purpose of this paper
is to present a unified form or structure of such a problem. Of
course, it will not be universal, but there is a hope that it will cover
a significant part of the transport-supply optimization problems.

However, a unified structure of problems does not imply unified
methods of solution. The second purpose of this paper is to inspire
colleagues to try to create new methods from the unified structure
of the problem.

Transport supply is a response to the given transport demand.
The demand can be modelled continuously or discretely. 

1.1. For the given period, e.g. the morning peak, a continuous
demand can be expressed by an O-D-matrix of flows F � (fij) where
fij represents the flow from the zone (or its centroid) i to another
one j . Suppose a network G � (V, A, c, l) is given, where V is the
set of vertices,  A is the set of (oriented) arcs, c(a) is the transition
capacity of the arc a and l(a) is the length of a. An assignment of
F to G (more precisely: to the set of all paths on the network G)
can be obtained by some of well-known procedures (if it exists, of
course). Then the continuous demand can be represented by a set
of paths P on G, each path p having a size f(p). To an O-D-pair
i,j there corresponds a set of paths Pij (containing one or more
elements), which covers the demand F in the sense that

f(a) � �
0

a�p

f(p) � c(a)                    fij � �
0

p�Pij

f(p)

These formulae mean that
� no arc capacity is exceeded
� each demand element belonging to the flow fij passes from i to

j through G using exactly one path p � P

We can look at the O-D-matrix F, the network G and the set
of paths P from two points of view: 
a) P is the same demand as F, represented on the given network G
b) G is the supply reflecting the demand F, P represents the

“portion” of G assigned to F.

We meet the case b) observing flows of cars on roads: the
road network G is the supply corresponding to the demand F. In
the case of flows of urban transport passengers, we meet a): the
set P on the network G represents only another representation of
the same demand. The form of the corresponding supply will be
described in the sequel.

Remark. Till now we have mentioned two forms of demand
models: O-D-matrices or sets of paths on the networks (derived
from the previous one). In some cases we can proceed further by the
partition-aggregation approach: 1. to part each p � a1, …, ak � P
into elementary paths p1 on a1,…, pk on ak , each one with the
size f(p) and 2. to aggregate all elementary paths on the same arc.
Then we obtain a set P�� such that each p�� � P�� equals to some arc

a � A and the following formula holds: f(p��) � �
0

p���p

f(p). In the

sequel, we shall briefly say that P�� is another form of the same
demand as F or P.
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1.2. While continuous demand model deals with streams (flows)
of transport elements (cars, passengers, etc), the discrete demand
deals with batches (a batch � a group of transport elements
moving together from the beginning of its trip to the end). A batch
is represented by a quintuple b � (ob, db , tb , ab , nb) where ob is the
origin, db the destination, tb the departure time from the origin, ab

the arrival time to the destination and nb the number of elements
of the batch b. A demand is determined by a set of batches B. Of
course, we suppose ob , db � V where V is a given set of vertices of
a given network G.

Similar to 1.1,  we can suppose a network G � (V, A, c, l) to be
given, where V is the set of vertices, A is the set of arcs, c(a) is the
transition capacity of the arc a and l(a) is the length of a. However,
G is not sufficient mathematical structure for the set B to be assign-
ed to. We have an important difference between the set of flows F
and the set of batches B. The flows are constant during the whole
time period we consider and thus each one is determined by its
origin, destination and size. On the contrary these data are not
sufficient to determine a batch. We need to add the departure and
arrival times, usually taken from the time set T � {0, 1, …, 1339},
which represents each minute during 24 hours. Then the suitable
structure for the assignment of B will be the time-space graph GT �
� (V � T, A′) where ((v1, t1), (v2, t2)) � A′ if (v1, v2) � A and t2 �
� t1 � l(v1, v2)/s, s is a speed of a batch if transported from v1 to
v2. An assignment of B to GT can be obtained by some of well-
known procedures. A problem can occur in applying capacity con-
straints. For instance, it can be formulated as follows: For a � (v,
w) c(a) means the number of unit elements, transportable through
the vertex v to w during one hour (60 minutes). Thus if a batch
b containing nb elements is assigned to pass through v into a at the
time t, the next batch is allowed to pass there no sooner than at
time t � 60nb/c(a). After such an assignment a discrete demand
can be represented by a set of paths P on GT.

Similar to 1.1, we can look at the set B, the network G and the
set of paths P from two points of view:
a) P is the same demand as B, represented on the given network

GT
b) G is the supply reflecting the demand B, P represents the

“portion” of GT assigned to B.

Compared with 1.1 our experience shows that the alternative b)
is very rare in practice. Hence, if speaking about discrete demand,
we shall suppose it is given either by a set of batches B, or by a set
of paths P on the space-time graph GT.

Both cases 1.1a) and 1.2a) deal with the situation where the
demand can be characterized either by
(i) a set of demand elements F resp. B or
(ii) a set of paths P on a graph G resp. GT.

In regard to concerns about supply, we have already present-
ed one form of its description in 1.1b) and 1.2b). The correspond-
ing optimization problem can be formulated in the following way:
To find “the cheapest” graph G which enables the assignment of
the given demand F(B). Of course, the words “to find” and “the 

cheapest” ought to be said more precisely but we shall not do it.
The problem is frequently studied in the traffic engineering bibli-
ography. We shall concentrate our attention to the optimization of
supply in the case a).

The application of the partition aggregation approach to the
discrete demand needs some modification. One has to consider
that the aggregation of two elementary paths on the same arc ((a1,
t1), (a2, t2)) is quite natural but what about the situation when one
of them is on the arc ((a1, t1), (a2, t2)) and the other one on ((a1,
t1 � 1), (a2, t2 � 1))? May we aggregate them? And what to do
when 2 or �1 is instead of 1? What border � to choose for such
an � -aggregation? And what to do if an elementary path can be
((a1, t1), (a2, t2)) � -aggregated to the left and to the right as well?
In [3] one can see the complexity of such aggregation.

Both in 1.1 and 1.2 it is quite natural to adopt the following
approach: If the demand is specified by a set P resp. P�� of paths on
the graph G or GT respectively, the supply ought to be described by
the same way, i.e. as another set of paths Q resp. Q�� on the same
graph. How to formulate the optimization problem and how to
solve it? The answers are in the next parts.

2. Optimization problem in the continuous model

Suppose the demand is described like in 1.1. Let R be available
rolling stock, i.e. let each r � R represent a vehicle with the capa-
city c(r). Let Q(R) � {q(r): r � R} be a set of closed paths (�circles)
on the network G. Then we can say Q(R) a continuous supply gene-
rated by the rolling stock R on the network G. We shall suppose
the continuous supply to be realized in the following way:

We suppose a vehicle r � R moves periodically on the path
q(r) with the period t(q(r)) � the duration of the minimum ope-
ration cycle of the vehicle r on q(r) (in minutes), containing the
necessary running and manipulation times. Doing this, the vehicle
supplies the dynamic capacity (briefly d-capacity) c(q(r)) � 60c(r)/
t(q(r)) on the path q(r), i.e. it can (fully) satisfy an assigned demand
not exceeding c(q(r)) on any arc belonging to q(r). Regarding to it
we can formulate the following problem:

2A) The FQ-Continuous supply optimization problem. Let F be
a demand, let Q(R) be a class of all possible sets Q(R) on the net-
work G and let wF(Q) be an objective function on Q(R). The goal
is to find a supply Q(R) � Q(R) minimizing the value wF(Q(R)).

In the prevalent cases a “man-machine” approach is adopted
in the solution of this problem. The man chooses Q(R) and the
machine calculates the value wF(Q(R)). One can ask why such
a “primitive” approach is prevalent in solutions of the problems
mentioned above. Why another more sophisticated approach is
not used instead. The reason is in the fact that the “satisfaction
level” of F by Q (or G) is calculated by means of the assignment
and it is difficult to introduce it into some more sophisticated opti-
mization model. But  a way exists to overcome this obstacle, espe-
cially in the cases 1.1a), 1.2a):
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I. Neglecting any constraint concerning limited rolling stock
or finances to find an “ideal” assignment of the demand F to the
set of all paths on the network G. To denote the set of paths assign-
ed to F by P. To consider P the new representation of the same
demand is  F.

II. To find the “best approximation” of the set P in the class
Q(R).

From this moment we shall concentrate on step II., because
step I is “classic” and well-known. The “best approximation” will be
expressed by an objective function (a “distance” function). 

2B) The PQ-continuous supply optimization problem. Let m(P, Q)
be a non-negative objective function on the pairs P, Q of demand
and supply, respectively. Then the problem can be formulated as
follows:

Given network G and demand P on it. Given a rolling stock R.
To find a supply Q � Q(R) � Q(R) minimizing the value m(P, Q).

We can see that no constraints are contained in this formula-
tion. The idea is that a violation of a constraint can be expressed
by an increase of the value of the objective function m.

Naturally, an alternative formulation can be reached using
constrains separately, not included in m. Let the constraints be
mi(P, Q), i � 1, …, n. Then the problem can be formulated as
follows:

Given a network G and a demand P on it. Given a rolling stock
R. To find a supply Q � Q(R) � Q(R) fulfilling the constraints
mi(P, Q), i � 1, …, n and minimizing the value m(P, Q).

2C) The P��Q-continuous supply optimization problem. This
problem can be formulated equally as in 2B. We only take into
account that the “input” set P�� contains one-arc-path only.

Example. In practice, we can meet a continuous supply opti-
mization problem, e.g. in urban bus transport. Bus routes corres-
pond to paths on the urban street network. Usually, more than one
vehicle operates on the same line, i.e. for the route i there exists a set
of buses Ri � R assigned to the route i and consequently q(r) � i
for each r � Ri . Then we can define the d-capacity of the route i as 

c(i) � �
0

r�Ri

c(q(r)).

The “classic” constraint is that each passenger must have a po-
ssibility to be transported, i.e. for each fij � 0 there must exist
a path p � a1, …, ak such that each arc ah belongs to some q(r).
Of course, we have to remember that the given rolling stock R (i.e.
the limited number of available buses) has another constraint as
well.

The “classic” objective function is
� either the average travel speed of a passenger (to be maximized)
� or the maximum overloading of the bus (to be minimized).

The disadvantage of average travel speed consists of the fact
that the solution of the problem has to determine the number of
buses xq assigned to the route q. The constraint on the number of
buses contains it in the linear form (“in the numerator”), but the
speed of the (buses changing) passengers is derived from their
travel times on individual routes and the expression of the travel
time contains xq in the denominator. Hence one cannot avoid the
use of non linear programming. On the other hand the maximum
overloading can be expressed by the minimum ratio of supply and
demand on the individual arcs and there xq is in the numerator
and one can use linear programming which is much more simple
then the non linear one.

3. Optimization problem in the discrete model

Suppose the demand is described like in 1.2. We shall proceed
similarly as in 2. Let R be a rolling stock, i.e. let each r � R
represent a vehicle with the capacity c(r). Let Q(R) � {q(r): r � R}
be a set of paths (now we don’t require that they are closed) on the
time-space graph GT and let Q(R) be the set of all possible sets
Q(R). Then we can call Q(R) a discrete supply generated by the
rolling stock R on the network G. In contrast to the continuous
one, the discrete supply consists of the paths q(r) passed by
a vehicle only once, without any repetition. Hence the concept of
d-capacity is not necessary to be introduced. The capacity of q(r)
equals to the one of r in this case and it must be considered in the
assignment of the demand batches b to the supply vehicle trips
q(r).

The objective functions wB and m can be introduced similarly as
in 2 and the discrete supply optimization problems 3A, 3B and 3C
can be formulated similarly as the continuous ones in 2 as well. Of
course, GT is put instead of G:

Example. In practice, we can meet this problem e.g. in region-
al (rural) bus transport. Bus journeys correspond to paths on the
time-space graph, generated by a road network. A path determin-
ed by a concatenation of paths corresponding to individual jour-
neys and paths corresponding to idle movements represents a bus
daily duty.

4. Solutions of the optimization problems

Both continuous and discrete supply-optimization problems
have similar mathematical structure: Let G be a digraph, let F(B),
P or P�� be a demand on it. Let Q be a class of admissible sets of
paths on G(GT) and let wF(wB) or m(P, Q) be a “distance” function.
The problem is to find such Q � Q that wF(Q)(wB(Q)) or m(P, Q)
is minimum.

Since the set P(P��) is given, we can denote mP(Q) � m(P, Q),
more simply m(Q) � m(P, Q). (or the same for P��).

The spectrum of different models and methods solving parti-
cular types of problems is very rich and it is impossible to mention
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them all. We have chosen some considering they can properly
complete the content of the paper.

4.1. Local optimization. In fact, it is a modification of a man-ma-
chine evaluation of possible solutions. The difference is the replace-
ment of a man by a machine. The computer starts with an initial
solution, evaluates it and then looks for a better solution among
the “neighbouring” solutions. Several metaheuristics are available for
this process: tabu search, simulated annealing, genetic algorithms.

Example 1. Multiple Travelling Salesman Problem. This problem
can be met in practice very often. We can mention bread or news-
papers delivery, litter or fresh fruit collection, etc. If the problem
has a low size, linear programming can solve it. If it is more exten-
sive it needs to be solved by a heuristic method. Even the classic
Clarke & Wright one is of the local-optimization type. It starts
with the set of direct to-and-from paths and afterwards it looks for
the best improvement of the topical solution by combining a pair
of paths into a new one.

Example 2. Bus daily duties optimization. This problem is usually
solved by other types of methods (see e. g. [1], [5]). But some-
times, the final result is not fully satisfactory, e.g. because of the
fact that some constraints have not been introduced into the basic
formulation because of the inability of used methods to take it into
account. Then a local optimization can be adopted. It consists of
the crossing of two duties. We can illustrate it graphically:

Simple crossing duty No. 1 j11 j12 j13 j14

duty No. 2 j21 j22 j23 j24

In the starting solution the duty No. 1 consists of the journeys
j11 the duty No. 1 consists of the journeys j11 � the duty No. 1
consists of the journeys j11, j12, j13, j14, the duty No. 2 consists of
the journeys j21, j22, j23, j24. After the simple crossing the new duty
No. 1. consists of the journeys j11, j12, j23, j24 and the new duty No.
2. consists of the journeys j21, j22, j13, j14.

Double crossing duty No. 1 j11 j12 j13 j14

duty No. 2 j21 j22 j23 j24

After the double crossing the new duty No. 1. consists of the
journeys j11, j22, j23, j14 and the new duty No. 2. consists of the
journeys j21, j12, j13, j24.

4.2. Cutting & Crossing. This method is due to S. Palúch. He
has informed me privately, no paper on it is known. The idea is
the following:

Cutting & crossing duty No. 1 j11 j12 j13 j14

duty No. 2 j21 j22 j23 j24

duty No. 3 j31 j32 j33 j34

duty No. 4 j41 j42 j43 j44

the cut

The cut divided all (divisible in that time) duties into the first
and the second parts (heads and tails). They form a bipartite
graph. Then the cheapest matching problem is solved, and the
heads are connected with the tails determined by the matching. In
our example the new tail for the duty No. 1 is the fourth one, etc.

This method is applicable mainly in the case of the separabi-
lity of objective functions. The function m(Q) is said separable if 

m(Q) � �
0

q�Q

m(q) where q denotes an individual duty. It is true e. g. 

if the value m(q) expresses a combination of penalties for idle
movements, minimum necessary size of vehicle, lack of driver’s
rest, etc.

4.3. Choice from the wider set Q0. Suppose again a man-machine
cooperation. A man creates a set, which contains many times
more paths than is expected to be in the solution set Q. A com-
puter chooses the paths q from Q0 by a binary variable using linear
or non-linear programming minimizing the value of the objective
function. Then Q � {q�Q0: xq � 1}.

Example. Optimal bus routing and frequencing. This approach
is due to Erlander and Schéele [4]. They used travel speed as the
objective function; therefore, they had to use non-linear programm-
ing. On the other hand, in [2] minimum supply-demand ratio
objective function was adopted which enables use of linear pro-
gramming.

4.4. Hopes for the future. The author hopes that new methods
(heuristic and maybe even exact) could arise after a development
of the theory of minimization of functions on the classes Q of the
sets Q of paths on the networks.
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