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1. Introduction

Artificial neural network (ANN) is now being applied to many
problems far removed from their first beginnings. Application to
management problems have included predicting bankruptcy [3],
predicting ratings of corporate bonds [11], forecasting financial
markets [6] and time series forecasting [7]. Their main strengths
lie in pattern recognition and have been a hot topic of research for
many years now.

There is much controversy about the application of traditional
statistical or econometric models and the ANN approaches within
the field of economic time series modelling and forecasting. These
controversies are based on the assumptions that there is no con-
sensus at all on whether there is chaos in economic time series or
not. Various tests for nonlinear pattern and chaos in time series
have been proposed to illustrate the nonlinear nature of certain
processes. A survey of these tests is presented in [1].

The goal of this paper is to illustrate those three areas: proba-
bilistic, adaptive signal processing and computational networks
may be used to economic time series modelling. In Section 2, we
can see that a random process of time series of stock prices may
be generated as the output of linear filter driven by white noise.
Section 3 is focused on the behaviour of the GL filter and LSL
when they are used to forecast future observations of stationary
AR processes. In Section 4 of this paper, we report on an ANN
application that was designed and run by [9] to investigate the
problem of forecast accuracy across proposed models. 

2. Application of the Box-Jenkins methodology 
in the stock prediction problem

In this section, we give an example that provides one kind of
possible results. We will regard these results as referential values for
the approach of adaptive signal processing procedures and ANN

modelling. Many of modelling techniques of autoregressive processes
are based on recent developments in time series analysis recently
consolidated and presented by Box and Jenkins [4].

To illustrate the Box-Jenkins methodology, consider the stock
price time readings of a typical company (say VAHOSTAV com-
pany). We would like to develop a time series model for this
process so that a predictor for the process output can be devel-
oped. The data was collected for the period January 2, 1997 to
December 31, 1997, which provided a total of 163 observations
(see Fig. 1).

To build a forecast model the sample period for analysis y1, …,
y128 was defined, i.e. the period over which the forecasting model
was developed and the ex post forecast period (validation data
set), y129 , …, y163 as the time period from the first observation
after the end of the sample period to the most recent observation.
By using only the actual and forecast values within the ex post
forecasting period only, the accuracy of the model can be calcu-
lated.

Fig. 1 The data for VAHOSTAV stock prices 
(January 1997 – December 1997) and the values of the AR(7) model

for VAHOSTAV stock prices estimated by GL algorithm

To determine appropriate Box-Jenkins model, a tentative ARMA
model in identification step is identified. In Figure 2, the estimate
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of autocorrelation (r^k) and partial autocorrelation a^kk function
(ACF, PACF) of the data are given. To test whether the autocor-
relation and partial autocorrelation coefficients are statistically
equal to zero, we use the t-statistic tr � r^k/S(r^k) and ta � a^kk/S(a^kk)
where

S(r^k) � N�1/2 	1 � 2 �
k�1

j�1
r^j


and

S(a^kk) � N�1/2

denote standard errors of the kth sample autocorrelation or partial
autocorrelation coefficient, respectively, N is the number of data
points, k is the lag. Since the ACF decays in an exponential
fashion, and the PACF truncates abruptly after lag 2, we may ten-
tatively identify the model for this time series as AR(2).

Fig. 2 Autocorrelation function and partial autocorrelation function 
of the data for VAHOSTAV stock prices (period for analysis)

In the estimation step, we compute estimates for the parame-
ters of the AR(2) model

y1 � � � a1yt�1 � a2yt�2 � �t t � 1, 2, …, N�2 (1)

or with of obvious matrix notation

y � Xa � �

by OLS (Ordinary Least Squared)

a^ � (X�X)�1X�y � 	 
 � 	 
 (2)

In the diagnostic checking step, we test adequacy and close-
ness of fit of the model to the data by sample autocorrelation
function of the residuals say

26.693
1.113

�0.127

�
a^1

a^2

et � yt � y^t ,    t � 1, 2, …, N�2 (3)

The sample autocorrelation function of the residuals is shown
in Fig. 3.

Fig. 3 Sample autocorrelation function of the residuals for model (2)

The modified Box-Pierce statistic Q is used for collectively
testing the magnitudes of the residual autocorrelations for
insignificance. The statistic is [5]

Q � (N � d)�
K

k�1
r2
ek (4)

where r2
ek is the square of the residual autocorrelation coefficients,

for lags k � 1, 2, …, K, d is d th differences of the data. For our
stock price time series the Box-Pierce statistic for lag k � 42 was
computed to be 27.78. This value is less than the critical chi square
value of 55.7585 (degrees of freedom is 42 � 2�40, � 0.005).
Hence, we can conclude that the error terms are random and the
model (1) is an adequate model.

3. Stock price prediction using adaptive signal
processing procedures

In practice, the modelling of a set of data as we shown in
Section 2, is a much more complex process than the one of fitting
and testing. Most of deterministic methods to signal processing
have the goal of representing a given sequence {yt} as the impulse
response of a rational linear system [2], [12]. The AR model
involves a linear filter with transfer function H(z), where

H(z) � [A(z)]�1 � (5) 

and is also known as the all-pole model which has only a nontriv-
ial denominator polynomial, generating the random process {yt}
from the white noise {�t}. The linear filter is represented by the
inverse of the polynomial [A(z)]�1. The difference equation for
the input-output relationship for this filter is

yt � �
p

k�1
akyt�k � �t (6)

or

yt � �
p

k�1
akyt�k � �t (7)

where ak are the filter parameters that determine the location of
the poles of linear filter H(z). To forecast the observation we can

1
��
1 � �

p

k�1
akz�k
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take expectation at origin t�1 of the model (7) written at time
t�1, namely

E[yt] � y^t � ��
p

k�1
akyt�k

(8)

For selecting the model order p, we will now monitor predic-
tion Mean Square Error (MSE) of the model (8). If the data is
truly described by a finite-order AR model, then the theoretical
MSE becomes constant once the model order is reached. A real-
ization of this criterion is shown in Fig. 4.

Fig. 4 Graph of MSE (analysis period) versus model order p.

As can be seen from Fig. 4, the MSE’s seen to become con-
stant at p � 7. Then the linear filter (7) has the form

yt � ��
7

k�1
akyt�k � �t (9)

The final estimates of predictor parameters (9) are obtained
using two of adaptive filtering algorithms in signal processing. The
Gradient Lattice (GL) adaptive algorithm and Least Squares Lattice
(LSL) form for the parameter estimates of the predictor (9) were
used. These algorithms are coded in MATLAB and described in
[2]. In this case the process of calculating predictor parameters
are updated as each new data point becomes available to track the
changing statistics. In Tab. 1 parameters of AR process and the
corresponding RMSE’s (Root Mean Square Errors) for models
(1) and (9) are given.

The RMSE’s are called standard deviations of the single-period-
ahead forecast errors. For this measure, the AR models estimated
by OLS and GL procedures not exceed 5 % limit of the variation
coefficient, while the variation coefficient (V) computed as V �
RMSE/y�, where y� is the mean of the stock price time series, for AR
model estimated by LSL procedure is 5.59%. Fig. 1 shows the GL
prediction results and actual values for stock price time series in
both analysis and ex post forecast period. The GL approximations

in both intervals visually match the actual stock series quite well.
However the corresponding RMSE value for analysis period is
214.48. This is greater than that for ex post-forecast period. The
RMSE statistic is here not adequate, because most errors are fairly
small, i.e. the model is a good fit to the historical data but there are
only first three large errors, these are magnified by using RMSE
(since all the errors are squared). This phenomena is produced by
GL algorithm itself and this does not influence the ex post fore-
cast errors.

4. Neural network approach

The structure of an ANN is defined by its architecture, its
activation functions and learning algorithm. While many variations
are possible we suggested an alternative of the most common form
of ANN which was suggested and discussed in [8]. This alterna-
tive of ANN is pictured in Fig. 5.

Fig. 5 Fully connected single hidden layer network

Fig. 5 shows a fully connected and strictly hierarchical ANN
with variational number of inputs, further variational number of
hidden layer units and one output unit. Processing units of the
hidden layer have an activation function S – shaped tanh, which
produces values of outputs oj , j � 1, 2, …, s ranging from �1 to 1.
Processing units of hidden layer have the associated weights wrj , r �
� 1, 2, …, k, j � 1, 2, …, s. Input data xr of the ANN are stan-
dardized variables. The standardized version of the variables is
created in a data-preprocessing unit. The system in a preprocessing
unit subtracts the mean of the variable from each observation in
the variable and divides the result by the standard deviation of that

OLS, GL and LSL estimates of AR models Tab. 1

*ex post forecast period

Model Order Est.proc. �
^ a^1 a^2 a^3 a^4 a^5 a^6 a^7 RMSE*

(1) 2 OLS 26.639 1.113 �0.127 67.787

(1) 7 OLS 45.930 1.085 0.0861 �0.2531 0.0836 �0.0057 0.2081 �0.2281 76.548

(9) 7 GL �0.7513 �0.1701 �0.0230 �0.0128 �0.0028 �0.0472 0.0084 68.540

(9) 7 LSL �0.8941 �0.6672 0.7346 �0.2383 0.1805 �0.5692 0.4470 94.570
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variable. After standardization all input variables xr have values
ranging from �1 to 1 and the bias equals to zero. Hidden layer
weights wrj are estimated from data according to the learning tech-
nique and choice of measure of accuracy in any ANN application.
The processing units of hidden layer produce output values oj such
as

oj � tan H��
s

r�1
wjrxr� j� 1, 2, …, s

A dependent variable y^ is produced in an output unit. The
output layer unit produces a dependent variable y^ so that the hidden
layer outputs oj , j � 1, 2, …, s are each multiplied by an additional
parameter (weight) estimated from the data. These weights have
a clear interpretation. They show how hidden layer outputs oj con-
tribute to the dependent variable y^ (total model). The dependent
variable is transformed to the origin scale in postprocessing unit.

Fig. 6 RMSE’s – validation set (normalized data)

Our ANN was trained on the training data set by Back-Propa-
gation algorithm. Periodically, during the training period, the RMSE
of the ANN were measured not only on the training set but also

on the validation set. The final ANN chosen for the stock price
prediction is the one with the lowest error on the validation set
(see Fig. 6).

The RMSE’s of our predictor models are shown in Tab. 2. 

Tab.2

* Validation set

According to the results of our experiments, the predictor based
on the ANN forecasting model is the best, but only slightly better
than the AR(2) model. As is stressed in [10], neural networks can
outperform standard forecasting procedures at least for certain
types of situations. Namely, where the relationship between inputs
and outputs are highly nonlinear. Because the results were based
on chosen stock price time readings, they were difficult to general-
ize in other situations. Yet, the results certainly provide a rational
way for improvement of forecasting ability in nonlinear economic
systems.
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Model RMSE*

AR(2) – OLS estimates 67.7

AR(7) – OLS estimates 76.5

AR(7) – GL estimates 68.5

AR(7) – LSL estimates 94.6

Neural network 67.2
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