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THEORETICAL STRENGTH OF SOLIDS

The significance of theoretical strength (TS) investigations is explained and a brief overview of the current state of TS calculations is
presented on the background of a historical evolution. Influence of crystal defects on TS is outlined by taking into account published theoretical
models. The study is completed by a discussion concerning differences between theoretical and experimental results.

1. Introduction

The strength of engineering materials is usually controlled by
nucleation and motion of dislocations or microcracks. If such
defects were not present, the material would only fail if the theo-
retical (ideal) strength were reached. As a rule, this value is related
to the infinite perfect monocrystal (as a generally most stable
state of a solid) of particular chemical composition under defined
loading mode. Starting from the beginning of the last century,
there is a more or less continuous effort expended in order to
obtain theoretical and experimental data concerning TS of various
solids [1]. The TS values set an upper limit to the envelope of
attainable strength and its knowledge enables us to assess the gap
remaining to upper strength values of advanced engineering mate-
rials in each period of time. However, this is by far not the only
reason for the TS investigation.

From the theoretical point of view, the TS plays a decisive role
in the fundamental theory of fracture. For example, the stress nec-
essary for nucleation of dislocation loop can be identified with the
shear TS value and the local stress for nucleation of a cleavage
crack should overcome the tensile TS value [2, 3]. The ratio of
these values expresses the tendency of the crystal matrix to become
brittle or ductile [4, 5]. From the practical point of view, the shear
TS appears to control both the onset of fracture and dislocation
nucleation in defect-free thin films and, in particular, in nano-
structured materials that are currently being developed. It has
been confirmed most eloquently by nanoindentation experiments
(see e. g. [6, 7]). Moreover, the perfect monocrystalline wires
(whiskers) are used as reinforcements in advanced composite
materials and large metallic and ceramic monocrystals start to be
important in special engineering components, e.g. in turbine
blades [8].

When considering a perfect crystal deforming homogeneously

in a nonlinear elastic way [9], the total internal energy of the
crystal can be expanded as

1
E=Ey+ VY am+ 5V 3 G+ O(n)
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where o are components of the stress tensor, 7, are components
of the Lagrangian strain tensor, C; are the second order elastic
coefficients and V' is the crystal volume. Here, the simple Voigt
notation can be used since the tensors oy, m,; and Cy, (i, j, k, [ =
=1, 2, 3) are symmetric with respect (ij) «~ (ji) to interchange.
By setting £, = 0 and using the internal energy per volume unit
E, = E/V, one can simply write

_ OE, )
= om, 0, (2)
_0E, ;
g; = a”h‘ 3)

The energy-strain curve can be determined using empirical
interatomic potentials or calculating the electronic structure of
the crystal. For each particular loading case, the TS is character-
ized by a set of 6 values of the associated stress tensor compo-
nents. Consequently, an infinite number of “theoretical strengths”
exists for a given crystal. For practical reasons, only special loading
cases, determined by a single value of the stress tensor compo-
nent, used to be connected with the TS value. It concerns the uni-
axial and the three-axial (hydrostatic) tension and compression
loading modes as well as the simple shear case. The respective TS
values denoted as 0, 0}, 0y, 0 and T, cover the most impor-
tant stress state range occurring in engineering practice. In these
cases, TS corresponds to a maximum reachable gradient on the
energy-strain curve and its attainment is accompanied by a mechan-
ical instability of the crystal lattice.

2. The History of Theoretical Strength Investigation

The well known classical estimations of TS values 7, and o,
are those of Frenkel [10] and Orowan-Polanyi [11]:

Gb
T = 7 4)

E’}/ 1/2
Oy = <G_> ’ (5)
0
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where E and G are elastic moduli in tension and shear, b is the size
of the Burgers vector, / is the distance between shear planes, vy is
the surface energy and g, is the lattice constant in the tensile
direction. Both expressions can be easily derived assuming the
sinusoidal stress-strain curve. In spite of a simple pair atomic inter-
action approach, both relations give a plausible orientation results
7, =~ G/10 and o;,, = E/10 for TS values.

The Mackenzie theory [12] represents a further milestone in
the development of TS calculations. The first three terms of the
Fourier expansion are used as the energy-strain curve. On the other
hand, however, it allowed some physically irrelevant assumptions
leading to very small values of 7, = G/30 for fcc. crystals [13].
Since that value seemed to be rather close to some experimental
results, an optimistic conclusion was accepted simultaneously with
a term change from theoretical to ideal strength [ 1, 12, 14]. However,
more recent semiempirical and ab initio approaches [ 13, 15] con-
firmed a good validity of the classical result (4). Therefore, we keep
use the term “theoretical strength” as a more relevant one.

During the last 30 years, many types of empirical interatomic
potentials were proposed as Johnson, Morse, Born-Mayer, Lennard-
Jones, Stillinger-Weber, ionic, polynomial, etc. Empirical parameters
in these potentials are to be established by fitting to experimental
data on equilibrium lattice parameter a,, elasticity constants C; or
cohesive energy U,. For more extensive historical overview of
empirical approaches to TS see, e.g. [1, 14, 16]. In the last 25
years, semiempirical potentials constructed according to either
Finnis and Sinclair scheme (FS) [17] or embedded-atom method
(EAM) [18] became very popular for modelling extended lattice
defects like grain boundary structure in alloys. The FS potential
was constructed for many types of binary alloys reproducing
exactly the values a, ¢;, Uy, the vacancy formation energies U, as
well as the stacking fault energies Uy [19]. The EAM potentials
allow exact fits to elastic moduli of the third order Cy;, and yield
also reasonable phonon frequency spectra [20].

The values of a,, C; and Cy, characterise the closest vicinity
of the unstressed equilibrium state and the quantities U, U, and
U, are of integral character. The TS value, however, corresponds
typically to the 10 - 20 per cent atomic stretch from their equilib-
rium (unstressed) lattice. Therefore, approaches based on electronic
structure calculations - so called ab initio (or first principles)
methods - started to appear since 1980 [21]. They deal with
approximate solutions of many-particle Schrodinger equation for
solid crystal and enable the calculation of the energy-strain curve
without any experimental calibration at all. Assumptions like the
adiabatic approximation, density functional theory, variation prin-
ciple and tight-binding approximation are commonly used in the
models [22]. The last approximation enables to use various systems
of basic functions for the description of one-electron atomic waves.
It leads to a number of methods like, e.g., Augmented Plane Wave
(APW), Discrete Variational cluster Method (DVM) or Muffin-Tin
Orbitals (MTO). Methods based on Green functions, as Koringa-
Kohn-Rostocker, or on various pseudopotentials are also frequently
used. Generally, such approaches request advanced computers
and a lot of computation time. On the other hand, computational

methods as the full potential linear augmented plane waves
(FLAPW) or, the less general linear muffin thin orbitals (LMTO),
can be successfully applied without extraordinary demands on
computer level or time. The FLAPW method is among the most
accurate methods for electronic structure calculations. It is a pro-
cedure solving the Kohn-Sham equations for the ground-state
density, total energy and eigenvalues of many-electron system by
introducing the basic functions especially adapted to the problem.
The lattice unit cell is divided into the non-overlapping atomic
spheres (centred at the atomic sites) and the interstitial region.
The potential is expanded in the following form

Wr) = Z V,u()Y,, (r) inside sphere
Im

r) = Z Vi & outside sphere
K

where /, m are quantum numbers. Inside the atomic sphere a linear
combination of radial functions ¥}, (r) times spherical harmonics
Y, is used unlike a plane wave expansion in the interstitial region
outside spheres. The LMTO approximation of LAPW retains only
the / = m = 0 component inside the sphere (spherical average)
and the K = 0 outside (volume average). This method is particu-
larly useful in solving the high-symmetry problems as, e.g., the
hydrostatic loading of cubic.

3. The State of the Art

For the present, the ab initio approaches are able to yield
a sufficiently precise prediction of the mechanical behaviour far
enough from the unstressed equilibrium states. However, they have
to be supplemented by an assessment of the mechanical stability
of the loaded system.

A general stability condition for a quasi-stationary stressed
system leads to the requirement that the free energy (and at 7= 0
also the total internal energy) be minimum in subsequent con-
stant stress ensembles in accordance with the second law of ther-
modynamics [23-25]. If the solid is infinitesimally strained by &;
from a reference state associated with the stress o;; (in the standard
notation), the related Cauchy (true) stress ; can be expressed as

;= 05+ By &, 6)
where
1
B;‘/‘k/ = C[/‘k/ + 5(5,'/(0';/ + ‘kao'f/ + 5i/0'/k +
+ 8,0, + 28,0y (7
is the elastic stiffness matrix (i, j, k./ = 1, 2, 3), generally asym-
metric towards (i) ~ (ji) interchange. Construction of this matrix
is crucial for stability assessment. Namely, the system can be con-

sidered to be unstable when it holds

detCBO =0 )
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for the first time during the loading. It should be emphasized that
the elastic moduli in eq. (7) are the local ones, corresponding to
each point on the deformation path. Their values should be deter-
mined by introducing a sufficient number of independent small
deviations (strain increments) from the original deformation path
in each of its points. The solution of eq. (8) yields a different
number of possible stability conditions for different crystal lattice
symmetries as well as different loading modes. The lowest possible
number of necessary stability conditions (only two) corresponds
to the isotropic solid.

For example, in case of hydrostatic loading of a cubic crystal
one can write Cy; # 0, C, # 0, Cyy # 0, and C; = 0, others and
the simple relation o; = o §; holds for the stress tensor. By intro-
ducing these relations to eq. (8), one obtains the following stabil-
ity conditions [23]:

C, +2C, —0>0,
C, = Cp+ 20> 0,
Cyy+0>0.

The first condition prevents the bulk modulus from vanishing
(or getting negative) during the loading. Obviously, the left-hand
side differs from the bulk modulus for the stress-free state o = 0
only by a multiplication constant. The violation of this criterion is
directly related to the inflexion point on the energy-strain curve
and, therefore, no special tests along the deformation path are
needed for its analysis. Conditions (9b) and (9c¢) are related to the
vanishing of shear moduli and need special tests.

In general, two basic cases of instability behaviour related to
the TS can be distinguished when analysing the crystal deforma-
tion:

i) the instability occurs along the original deformation path,
ii) the instability changes the loading mode or the type of the
deformation path.

The first kind of instability means that the process of unstable
crystal collapse starts at the point of inflexion on the same (orig-
inal) deformation path. Assuming the constant stress ensembles
(i.e. the stress-controlled loading), the crystal starts to sponta-
neously disintegrate after reaching this point. During the process,
however, strain induced phase transformations (so-called displacive
transformations) may appear along the deformation path [26-28].
They are of the first order and, therefore, accompanied by a sym-
metry-dictated extrema on the stress-strain curve. Consequently,
more “TS values” can be found related to different points of
inflexion on the energy-strain curve. The TS is determined by the
stress associated with the first point of inflexion on the original strain-
energy curve. All other inflexion points are preceded by a break
down of at least one stability condition.

The second-kind instability occurs before reaching the first
point of inflexion on the original energy-strain curve. It changes
the type of the deformation path (e.g. the bifurcation from the
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tetragonal to the trigonal tensile path in the uniaxial tensile test of
fce crystals) or it may simply cause a change in the loading mode
(e.g. from the tensile to the shear or vice versa). In that case, t/e
TS corresponds to the stress related to the point of the first break
down of a stability condition preceding the point of inflection.

Beside the violation of mechanical stability conditions, some
phonon instabilities may be expected along the deformation path
[28]. Unfortunately, a too limited number of relevant papers has
appeared until now in order to be able to present a more general
statement concerning the role of the phonon resonance in the TS
analysis. Thus, the currently used methodology for calculating the
TS of the particular crystal can be summarised into the following
points:

1. Construction of a suitable empirical interatomic potential or
calculation of the electronic structure.

2. Calculation of the strain-energy curve and the related stress-
strain curve for the specific deformation path.

3. Formulation of stability conditions and calculation of their
left-hand side values as functions of strain.

4. Establishment of elastic and phonon instability ranges on the
strain-energy and/or stress-strain curve.

5. Determination of TS value as a stress related to the first point
of inflexion or to the first instability point on the stress strain-
energy curve.

4. Influence of lattice defects and temperature

In real perfect crystals (whiskers), a presence of some imper-
fections is to be expected, at least, the equilibrium concentration
of vacancies and a certain level of surface roughness. Thus, it seems
to be correct to mention the effects of lattice defects, surface
roughness and temperature on TS. From the principal reasons, the
strength of imperfect crystals can not be called as TS any more. In
this paragraph, therefore, only the term ,strength® will be used
instead of TS.

a) Point defects

Vacancies are inevitable in real crystals just near the zero
Kelvin temperature. However, the effect of monovacancies on
strength is negligible. It can be clearly seen from the fact that
the simple formula (5) for g, is equal to the Griffith criterion
for a nanocrack of the atomic size - a vacancy. The effect of
impurities and alloying atoms on strength was studied in
several works based on ab initio methods [29-31]. In summary,
the influence of a low concentration of point defects on strength
seems to be very small.

b) Dislocations
Dislocation slip is possible under shear stresses above the
Peierls-Nabbarro stress. The strength might be reduced by
4 orders (or even more) when the P-N stress is as low as in
metals,. On the other hand, the P-N stress is extremely high in
ceramic covalent crystals (C, Si, SiC, ZnS, Si;N,) and complex
ionic crystals (MgAl,0,, Al,O;, Al,05.MgO) so that the dis-
locations are practically sessile at the near zero temperature
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[32]. Therefore, only the tensile strength can be reduced by
about tens of percents due to microcracks initiating by the stress
relaxation around dislocations with long Burgers vectors.

Stacking faults

As far as we know, no special studies on the stacking fault (SF)
influence on strength were performed. Atoms on the stable
SF plane lie in the local energy minimum and no stress is
induced in surrounding volume. The energy of the SF per atom
is of about two orders lower than that of the free surface. We
may, therefore, deduce that the influence of SFs on the strength
value can be neglected.

Free surface and notches

The effect of perfectly flat surface on strength can be also
considered to be negligible. However, just small imperfections
like scratches or dimples act as stress concentrators (notches).
Their maximum effect on strength value can be roughly esti-
mated by a factor 1+2(//p)"/?, where / is the notch depth and
p is the curvature of the notch root (p > 0) [33].

Cracks

According to the Griffith law for perfectly brittle materials, an
atomically sharp crack of length a causes the drop in tensile
or shear strength values by a factor of (a/ag)"’ (a, is the lattice
parameter). However, only ceramics, semiconductors and, most
probably, Mo and W can be considered to be intrinsically
brittle crystals at zero absolute temperature [4, 5]. In all other
metals, the dislocation emission appears before the unstable
crack growth. This process increases the effective surface
energy and blunts the crack tip. Consequently, the drop in
strength must be much less steep than that predicted by Grif-
fith law.

Phonons (temperature)

The strength variation with temperature corresponds, basically,
to the problem of the role of phonons in deformation and
fracture processes. Although the Frenkel expression (4) sug-
gests simply that the variation should be the same as that of the
shear modulus, the eq. (5) brings the complication with the
temperature dependence of surface energy. The first approaches
predicted the drop in the uniaxial strength within the range of
several to tens of percents when changing the temperature
from 0 K to 1000 K, depending on the type of the empirical
interatomic potential used (short- or long range). Very recent
ab initio studies [34] suggest that some phonon instabilities
can be coupled with a violation of some shear stability condi-
tions. In general, one can assume that the temperature change
in the relevant elastic modulus might be considered to be an
acceptable lower-band first approximation to the strength tem-
perature dependence.

5. Theoretical and experimental results

Owing to the long history of TS calculations, a number of the-

oretical results concerning crystals of pure elements and com-

pounds is available in literature. On the other hand, the experi-
mental data are still rather limited owing to problems associated
with both the specimen preparation and the experimental arrange-
ment. It holds especially for experiments focused on the shear 7
and the three-axial oy, - in the latter case, there is even a lack of
any value. Selected theoretical and experimental TS values for
various crystals are presented in Tab. 1.

the

There is a three-order difference between the strongest and
weakest crystal. As expected, the highest TS values exhibit

a diamond crystal with pure covalent bonds and the lowest ones
belong to Van der Waals crystals of inert gases stable only in a low
temperature range. It should be emphasized, however, that a great
majority of o, values corresponds to the inflexion point on the
energy-strain curve and the stability analysis was omitted. Those
values are most probably overestimated. On the other hand, the
stability analysis applied to cubic crystals under hydrostatic tension
has revealed that, in most cases, no shear instability appeared
before reaching the inflexion point [36]. Therefore, values o,
obtained by ab initio (LMTO-ASA) method can be considered to
be very reasonable estimations of TS. A comparison between o,
values obtained by ab initio LMTO-ASA/LDA calculation and
those obtained by empirical approaches is displayed in Fig. 1 for
selected crystals. It is clear that, in most cases, the sinusoidal
potential overestimates the TS, whereas the Morse approximation
underestimates the TS. Results well comparable with the ab initio
calculations can be obtained by means of the polynomial poten-

tial.

The computed 7, values are lowest for fcc crystals. Most

experimental data obtained on perfect large monocrystals or even
on thin whiskers in uniaxial tension are of an order lower than cal-
culated TS values. It might be dedicated to the dislocation assisted
shear instability controlling the final fracture process. The very
high Peierls-Nabarro stress in covalent and complex ionic ceramic
crystals resists to nucleation and motion of dislocations. For such
crystals, indeed, the difference between theory and experiment is
relatively low. The probably highest ever reported experimental
value o;,, = 40 GPa = E/20 corresponds to the ZnO whisker
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[14]. The gap between the theory and the experiment for metallic
crystals becomes much lower by taking the stability conditions
into account (e.g. for Cu crystal [53]), but still remains to be high.
This can be understood particularly in terms of various imper-
fections of experimental procedure, including the crystal defects
discussed above. Additionally, there is resonance of short- wave-

steels exhibit only o

iu
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length phonons and its possible coupling with reaching the shear
TS in a significant crystallographic shear system. All such effects
are clearly beyond the description supplied by the mechanical sta-
bility conditions based on the theoretical continuum mechanics.
Let us note, finally, that the currently used ultra-high strength
/10 value of ultimate strength. From the the-

Calculated and measured values of theoretical strength Tab. 1.
Crystal Latt. Threeaxial Uniaxial TS Shear TS
TS [GPa] [GPa] [GPa]
theory theory experiment theory experiment
Na bee 20A 1371 | 0.04<100>E [14] 021<111>E  [13]
L5A [40] 0.2 <II0>E [14] 0.20<111>A  [41]
12E [16] 09 <III>E [14]
Si dia 20.5 A [37] 22.4<100>E [14] 4.14 [14] 13.7<100>E [1]
250E [16] | 473<11>E [14] | 7.60 [14] | 147<110>E [13]
248<111>A  [51]
C dia 540 A [39] | 168<100>E  [14] | 20.7(graph.)  [14] | 131<110>E  [13]
138E [16] | 205<111>E [14] | 19.6(graph.)  [I]
90<IlI>A  [42]
95<I1I>A  [43]
130<100>A  [42]
Cu fee 290 A 1371 | 41<100>E [21] | 125<I1l1>  [I] | 12<112>E [1] | 0.80<0l1>  [1]
199E [16] | 39<1I>E [14] | 294<Il1> [14] | 29<112>E [13]
3U<10>A  [44] | 150<100> [14] | 40<112>A [41]
29 <I11>A  [44] 1.74 <100>  [14] 2.7<112> A [41]
9.3<100>A  [35] 1.59 <110> [14]
Fe bee 425A [36] | 48.0<1lI>E [16] | 13.1<Il1I> [1]1 | 73<1I>E [14] | 356<11>  [1]
241E [16] | 30.0<100>E [16] 6.6 <IlI>E [1]
215E [16] | 13 <001>A  [47] 1.5<11>E [13]
Ti bee 9.5 <100>E [44]
W bee 53.1A [46] 61<100>E [16] 24.7<100> [14] 182 <III>E [14]
56.8 A [37] 29.5<100>A [49] 18.1 <111> A [41]
422E [16] 543<110>A  [48]
40.1<111>A  [48]
Pb fee 8.47 A [39] 047 <112>E [13]
547E [16]
Ar fee 0.25E [14] 0.35<100>E [16] 0.14 <110>E [13]
0.15E [16] 0.35<111>E  [16] 0.08 <112>E [13]
TiC Bl 44<001>A [50]
NaCl Bl 43E [14] 4.6<111>E [16] 1.08 <100>  [14] 32 <1I0>E  [18]
34E [16] 124<110>E [14] 23<112>E [14]
43<100>E  [14]
MgO Bl 85 E [16] 37<100>E [16] 23.7 bend. [14] 320 <110>E [13]
Ni;Al 28.1 A [35] 17.5<100>A  [52]
28<111>A [52]
B—Si;N,| P63m 57T E <100>  [17] 13.5<100> [14]
14<100> [1]
Polyeth. 26 E [1] 3.04 [14]
Kevlar 2.8-3.6 [1]
A - ab initio, E - Empirical
KOMUNIKACIE / COMMUNICATIONS 2/2004 9
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oretical point of view, however, materials of an extreme dislocation
density could, in principal, achieve the strength level of a;,,/2
[54].

6. Conclusion

In the recent time, a significant advance in the solution of the-
oretical strength problem has been achieved by application of ab
initio methods based on electronic structure calculations. A sig-
nificant success was achieved also by description of extended crystal
defects, as grain boundary structures and metastable phases, by
means of ab initio supported semi-empirical potentials. From the
theoretical point of view, the following items remain to be the
main challenges in the near future: i) ab initio supported semiem-
pirical potentials, ii) extended application and improvement of
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