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1. Introduction 

A majority of the state-of-art ASR systems models a speech
signal as a finite-state stochastic process to handle the great vari-
ability found in human speech. Acoustic observations of speech
are obtained through short-term spectral analysis. One speech
feature vector, which forms one observation, usually consists of
static spectral features (e.g. 13 cepstral coefficients) and their time
derivatives that determine temporal variations of speech spectra.
Such parameterisation is not optimal from either statistical or per-
ceptual point of view. A great redundancy in the speech features
makes further processing computationally much more costly.

Two-dimensional cepstral analysis preserves spectral variations
more efficiently while also yields uncorrelated features in both
time and frequency. In this paper we are giving ourselves the ques-
tion whether speech signal can be “observed in time” by a much
smaller number of the feature vectors (or observations) than it is
common in the present ASR systems. We propose a combination
of 2-D cepstral analysis and left-right continuous Hidden Markov
Model with a small (optimally designed) number of states and
acoustic observations. The system is evaluated on an isolated word
recognition task in Slovak language. Promising preliminary results
are presented.

2. On Markov Modelling of Speech

The most commonly used model for ASR is the first-order
Markov process. The popularity of this method lies in its model
simplicity, ease of training and acceptable recognition precision
on certain tasks [1]. Thus time-varying characteristics of a speech
signal are described through a chain of static states. Each model
has a number of states that approximates the number of distinct
acoustic or phonetic events in the unit being modelled. Such units
are commonly words or subword units as phonemes, diphones, etc.

Since details of the Markov model’s operation in speech analysis
must be inferred through observations of speech, the states of the
model are hidden. Such model is usually referred to as Hidden
Markov Model (HMM). A HMM constitutes of the state-obser-
vations and transition probabilities. The transition probabilities
provide a mechanism for connection of the states, and for model-
ling variations in speech duration and articulation rates. The statis-
tical distributions of speech features define acoustic observations.
Mel-frequency cepstral coefficients (MFCC) are the most popular
features of speech [1] [2]. The following discussion deals with the
HMM with continuous distributions of speech features.

The continuous HMM is defined by a set of parameters as
follows


 � (A, B, �, N), (1)

where A is the transition probabilities matrix, B is the output prob-
abilities matrix, � is the vector of initial probabilities, and N is the
total number of states (Figure 1). Let {y1, y 2 , …, yt} and {s1, s2 ,
…, st} be time sequences of acoustic observations and related
hidden states respectively then the probability of taking a transi-

Fig. 1. Four-state left-right HMM
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tion from the state i to the state j is aij � P(st � j | st�1 � i), and
A � {aij}; The output probability of emitting the feature vector yt

when state i is entered, is bi(yt) � P(yt | st � i), and B � {bi(yt)}.

In the first-order MM is the assumption P(st | st�1, st�2, …,
s1) � P(st | st�1). That means only neighbouring states depend on
each other, and past history, except the neighbour previous state,
is ignored in signal modelling. Although this simplification
enables much easier computation, it represents rather inaccurate
modelling since speech perception is conditional on much longer
time period. Human short-memory lasts several seconds whereas
ASR HMM “views” only the past speech frames. To enable to
incorporate a longer past time period (2 or more previous frames),
1st and 2nd time derivates (or differences) of MFCC, referred to
as delta (�) and delta delta (�2) coefficients, are added to the
speech feature set. Thus speech signal is represented by time
sequence of the feature vectors. Each feature vector usually consists
of 13 MFCC, which represent short-time spectrum, 13 �MFCC
and 13 �2MFCC, which represent spectral dynamics. The feature
vectors are computed on a frame-by-frame basis. In such a case
the one second long utterance is represented by almost 4,000
parameters (if the frame length is 10 ms).

3. Spectral Dynamics Represented by the Modulation
Spectrum 

Obviously, the prime carrier of the linguistic information is
changes of the vocal tract shape. Such changes are reflected in
changes of the spectral envelope of the speech signal. Furui has
already shown that spectral transitions play very important role in
speech perception [3]. If the spectral envelope is represented by
a set of coefficients (e.g. MFCC or Filter-Bank energies), each
coefficient varies gradually within each distinct segment of speech
and thus forms the time contour (magnitude of the coefficient as
a function of time). A shape of such contours, or spectral dynam-
ics, is usually described explicitly by adding delta coefficients to
the feature vector.

The procedure of delta coefficients computation can be seen
as a simple FIR filtering applied on time trajectory of each of the
spectral component (FB-energies in spectral domain or MFCC in
cepstral domain). More general approach to filtering of these time
trajectories, known as RASTA processing, was introduced and
extensively studied by Hermansky et al. [4], [2]. For illustration,
a spectrogram of the Slovak word “osem” is shown in Figure 1.
Spectral transitions between vowels are clearly visible.

3.1 Two-Dimensional Cepstrum 

The mel-frequency 2-D cepstral coefficients are computed by
applying 2-D cosine transform on the block of consecutive spectral
vectors (mel-FB energies) as follows [5]

S
^

FB(k, m) � log(SFB(k, m)), 0 � k � K�1, 

0 � m � L�1, (2)

where SFB(k, m) is the mel-spaced filter bank (FB) spectrum of
the frame m, K is the number of critical-width bands and L is the
number of frames used in the analysis block
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0 � u � K�1, 0 � v � L�1, (4)

Since not all the coefficients of the matrix C � {C(u,v)} are
needed for ASR, only selected coefficients form the TDC (Two-
Dimensional Cepstrum) feature vector.

Spectral analysis of temporal trajectories of spectral envelopes
yields the modulation spectrum of speech. In a TDC matrix, the
dimension v (in Eq. 4) represents the modulation spectrum.
Between the index v and modulation frequency in Hz is the fol-
lowing equation

� � �
n

F

F

s
� � N � v � �

T

v
� , (5)

where � is the modulation frequency in Hz, Fs is sampling rate, nF

is the number of frames in the analysis block, N is the length of
the frame, T is the total duration of the analysis block in seconds.
The human auditory system is most sensitive to modulation fre-
quencies around 4 Hz that reflects the syllabic rate of speech.
Thus the human hearing in perception of modulated signals acts
as a band-pass filter with the length of the impulse response of
minimally 150-250 ms [2] which is the length of 15-20 frames.
The results of speech recognition experiments have shown that the
components of the modulation spectrum below 1 Hz and above 
16 Hz have only a minor role in both human perception and ASR
[6].

In [5], [7], we have also studied discriminative properties of
TDC features on discrimination of confusable Slovak consonants.
In test utterances a group of 6 consonants (3 stops and 3 frica-
tives) were placed between the same two vowels. We studied what
components of the TDC matrix are the most important for
a phoneme discrimination. We used 12 cepstral coefficients along
the frequency axis (dimension u in Eq. 3–4). We confirmed that
only coefficients corresponding to the modulation frequencies
from the range mentioned above are important. In our case the
sufficient subset of TDC coefficients was between 12 � 5 and
12 � 7 whereas the coefficients with the index v � 0 (i.e. � � 0 Hz)
were excluded. If the coefficients with the index v � 0 were
included into the set, the recognition rate decreased rapidly, par-
ticularly for noisy speech.

3.2 2-D Cepstrum analysis in HMM framework

For ASR task, 2-D cepstrum (TDC) was first introduced by
Ariki [8] who used only one TDC matrix for each word. Recently,
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Jarina [5] made several experiments in which he modelled words
by a small number (1 or 3) of linearly spaced TDC matrices. He
applied a multilayer perceptron to discriminate the patterns formed
from these matrices. Also several works on combination of TDC
and continuous HMM have been reported [9–11]. Milner [9] used
the TDC for each frame while Kanedera [10] used a much longer
temporal window and only a small selection of TDC, which cor-
responds with the range of modulation frequencies between 3 and
9.5 Hz. The authors of these experiments reported increase of
recognition rate when using TDC based dynamic features rather
than conventional delta features.

In this paper, we investigate the combination of 2-D cepstrum
and HMM from a different point of view. HMM assumes that the
acoustic observations are uncorrelated. But in reality, an intra-
frame correlation (i.e. between static and dynamic features) as well
as a high inter-frame correlation (i.e. between successive frames)
are observed. Thus the number of observations in conventional
ASR systems is over-estimated. There are about 50–100 observa-
tions for one second utterance.

TDC analysis enables modelling dynamic properties of the
signal implicitly. The TDC computed via 2-D cosine transform
produces almost uncorrelated set of coefficients in both frequency
(index u) and modulation frequency (index v) dimensions. We
hypothesise that if the TDC is applied, a much smaller number of
observations is necessary (due to decorrelation properties of TDC,
a high redundancy in temporal trajectories of the speech envelopes
can be removed). For instance, in [5] we have shown that 22 spec-
tral vectors could be replaced by only one TDC matrix, from which
only about 60–70 coefficients are needed, unlike conventional ASR
systems, in which almost 800 coefficients (MFCC
�
�2) are
required for the same duration of speech. Each observation, which
is formed from TDC features, will incorporate information from
several hundreds milliseconds of speech which is in accordance
with the time interval of the short-time memory of human per-
ception.

4. Experiment

We designed the continuous density HMM with a reduced
number of acoustical observations represented by TDC features.
The model is evaluated on a Slovak isolated digit recognition task.
The speech database consists of 12 Slovak words (digits 0–9, digits
1 and 2 are spelled-out as both “jeden” and “jedna”, and “dva”

and “dve” respectively) uttered by 61 speakers. The database was
recorded in the Department of Telecommunications in the Uni-
versity of Žilina. The details about the speech database are sum-
marised in table 1. The ASR system is designed as speaker-
independent. We used a different non-overlapping sub-set of the
database uttered by different group of speakers for training and
testing. One HMM was created for each class.

4.1 ASR front-end 

A speech signal is analysed in frames. The analysis procedure
is depicted in Figure 2 . First, the signal is pre-emphasised by the
1st–order FIR filter with k � 0.97. The sliding 30 ms long window
is used with the 20 ms shift. That means 1 second of the signal is
split into 50 frames. FFT spectrum and 23 mel-FBE are computed
for each frame. The frames are grouped into blocks of 12 frames
with 6 frames overlap. TDC matrix is computed from each block
(Eq. 2–4). Only one quarter of the TDC matrix forms a feature
vector y (i.e. acoustic observation), which consists of 50 coeffi-
cients as follows 

y � {yd}�{C(u,v), u � 1, 2, …, 10; v � 1, 2, …, 5}, 

d � 1, 2, …, 50. (6)

Note the first row (u � 0) and first column (v � 0) of the
TDC matrix are removed.

4.2 HMM Design

Let PT be the probability that a training pattern has T acoustic
observations, and let Tmax and Tmin be maximum and minimum
number of acoustic observations through all training patterns
respectively. Then we propose that the number of states is given
by the equation

Train and test speech database Table 1

Recognition task Isolated Slovak digits

Number of speakers 61 (40 for training 
 21 for testing)

A/D conversion sampling frequency � 8kHz, 
resolution � 8bits/sample, telephone quality

Number of records 4 records per word per speaker, 12 words
48 � 61 � 2928 records in total

Fig. 2. Speech waveform and spectrogram of the Slovak word “osem”
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N � Arg
Tmax

T�Tmin

Max {PT}  (7)

The continuous output probabilities bi(y) for each state of
HMM are modelled by PDFs with a mixture of multivariate Gaus-
sians as follows

p(yi) � �
M

k�1
p(y, ki) � �

M

k�1
p(ki)p(yk, i) �

� �
M

k�1
mi,kN(y, Ui,k , �i,k)  (8)

where y is the given observation, Ui,k and �i,k are covariance
matrix and mean feature vector of the k-th Gaussian component
in the i-th state of HMM, and mi,k is the weight of k-th compo-
nents. M is the number of mixture components. The term N(y, U,
�) means multivariate joint Gaussian PDF of acoustic observa-
tions y, defined as

N(y, U, �) � �(2�) �det U��

�1 

e (9)

where D is number of the features in one acoustic observation
(D�50).

During HMM initialisation, acoustic observations of each
training pattern have to be divided among N states of the model.
Due to a highly reduced number of observations (see Figure 2) we
proposed the following initialisation procedure: First only training
utterances with the number of observations greater or equal to the
number of states are selected. Their observations are allocated to
the states of HMM, and centroids for each state are computed.
Observations of the rest utterances are allocated to the states by
a modified K–mean algorithm. Then all the observations are iter-
atively re-located to the states of the model by a modified K–mean
algorithm. In this stage, the transition probabilities are estimated.
The observations in each state are grouped to M clusters by VQ,
and hyper-parameters of emission probabilities U, �, m are esti-
mated. A training of HMMs was performed by the well-known
Baum-Welch algorithm using MLE criterion.

We tested 3 types of covariances: full, diagonal and spherical.
Spherical covariance is estimated as U � MSE . I, where I is iden-
tical matrix. Mean Square Error of a cluster is given as follows 

MSE � E
y

{(y � �)T (y � �)} (10)

4.3 Evaluation

ML classification using both the feed-forward and Viterbi
algorithms were applied, and almost the same results were obtained
for both methods (difference was only in speed of log-likelihood
computations where Viterbi algorithm suits better). We evaluated
PDF mixtures with 1, 2, 4, or 8 Gaussians. The results are sum-
marised in Table 2.

��
1

2
�(y��)TU�1(y��)

D
�
2

The spherical and diagonal covariance gives similar results.
The results, when full covariance is used, do not meet theoretical
expectations (theoretically, the full covariance should be the most
precise). But if we look closely at the third row of the table, we
notice that the recognition rate falls down rapidly when a number
of Gaussian components (and thus a number of parameters) is
increasing. This effect has occurred because of an insufficient
number of training data to tune all the parameters correctly (see
Table 1, only 40 � 4 � 160 records per word were available for
training).

Recognition rate in dependence of HMM set-up Table 2

5. Conclusion

The ASR HMM with a reduced number of observations is
proposed. In the model, one second of speech is described by only
about 400 features what is ten times less than in conventional
ASR systems. The performance of the system was examined on
a speaker-independent isolated digit recognition task. The satis-
factory results as seen in Table 2 are for the HMM with both the
spherical and diagonal covariance. The best recognition rate is
93.2%. We suppose that the recognition rate will further increase
if a bigger amount of training data is available. We believe that if
we re-train the model on a much larger database (1000–2000 speak-
ers is common for development of speaker-independent ASR) the
model will be competitive with the ASR systems that use conven-
tional methods. A great advantage of the proposed model is ease
of computation (particularly for spherical covariance) and very
fast signal processing and model training. It is suitable for appli-
cation with a limited computation performance and power (e.g.
mobile devices).

Number of Gauss. 1 2 4 8
components

Recognition rate

Spherical cov. 89.8 % 92.2 % 93.2 % 92.6 %

Diagonal cov. 90.6 92.6 92.3 92.3

Full covariance 87.2 66.0 20.7 9.3

Fig. 3. Procedure of speech signal pre-processing for HMM
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