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1. Introduction

All-pass filters represent a meaningful part of modern com-
munication systems, making possible equalization of signal chain
group-delay. This is important especially in the case of the data-
signal or video-signal processing. As known, the basic properties
of the all-pass filters are determined by all-pass transfer function
(1)

H(s) � h �
v(

v

�

(s)

s)
�� h (1)

With respect to the stability condition, the polynomial v(s) has
to be a Hurwitz polynomial. It is easy to derive that the transfer
function (1) corresponds to the non-minimal phase circuit whose
magnitude frequency response is frequency independent, deter-
mined by a multiplicative factor h. Phase response can be expressed
in the form (2)

�(!) � �2 arctan �
!

M

N

(

(

�

�

!

!
2

2

)

)
� , (2)

where !N(�!2) … represents an odd part of the polynomial v(j!)
and

M(�!2)  … represents an even part of v(j!).

The group delay "(!) is defined by the known formula
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There are many ways how to realize the transfer function (1).
Remember that passive realization of the group-delay equalizer is
usually based on the 1st- or 2nd-order lattice and their unsymmet-
rical equivalent circuits – see [1], [2]. In the field of active RC cir-
cuits are well-known implementations using a single-amplifier circuit
or universal biquad configurations as mentioned in [3], [4], [5]
and others. The first group of circuits suffers from inappropriate
sensitivity to the element value variations and amplifier non-ide-
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 (�1n)ansn
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a0 
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 … 
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alities. At the same time, a parameter setting is rather complicated
and does not allow simple tuning. The second group shows better
sensitivity properties, but negative odd numerator coefficients are
obtained as a difference of positive and negative terms. With respect
to this, such a circuit is sensitive to the perfect setting and ampli-
fier non-idealities. The mentioned circuits usually show a magni-
tude frequency response distortion which is caused by coefficient
errors, or, in other words, by errors of transfer function pole-zero
location.

To find a more suitable solution, a considerable effort has been
devoted to the search for a new circuit implementation of the
allpass transfer function. As shown in the following section, one
of the possible ways is based on a suitable application of a gener-
alized divider principle.

2 A generalized divider

In Ref.[6] we have presented a universal filter structure based
on a generalized divider principle. The basic arrangement of the
mentioned structure is shown in Fig. 1. The “black boxes” marked
as GIC correspond to the generalized immitance converters char-
acterized by the 1st-order conversion function ki(s) � ki.s , where s
denotes complex frequency. Note that such a structure allows real-
ization of any transfer function by appropriate setting of divider
branches, as is evident from the corresponding transfer function
(4)
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Fig. 1: Generalized divider arrangement
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Comparing H(s) to the general transfer function in the poly-
nomial form (5)

H(s) � , (5)

it is easy to derive formulae for numerator and denominator coef-
ficients as the functions of branch admittances and GICs conver-
sion functions

ak � Y2k �
k

i�1
ki ;  dk � (Y1k 
 Y2k) �

k

i�1
ki , (6)

where ki – denotes the conversion-function-multiplicative constant
of the ith GIC.

To apply the presented generalized divider structure in the
allpass design it is necessary to accept the following restrictions:
• The equal values of numerator and denominator coefficients at

the same power of s (but, in general, all the numerator coeffi-
cients can be multiplied by the transfer multiplicative constant 
h: ⇒ ai � h . di , i � 0, 1, 2, …, n).

• The odd numerator coefficients have to be negative
⇒ aj � �h . dj , j � 1, 3, 5, …

The relevant problem can arise in the second condition fulfil-
ment. The original generalized divider structure allows realization
of the transfer function containing the positive numerator coeffi-
cients only, as is evident from Eq. (4). To obtain the required neg-

ative odd coefficients, it is necessary to change the sign of the
corresponding branch admittances, or, to use inverted source voltage
at the inputs of the upper odd branches. An efficient solution
offers the use of the known Antoniou’s GIC circuitry – see [4, 5].
Let us consider Antoniou’s GIC in Fig. 2, whose conversion func-
tion is expressed by Eq. (7), and now modify the original circuit
by adding the auxiliary port x�x�. An arbitrary loading imped-
ance Zx , connected to the auxiliary port is transformed to the
“main” input port 1 � 1� as the negative impedance Z1�1�, which
is presented by the formula (8)
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Using this principle it is easy to derive the modified general-
ized divider structure shown in Fig. 3, convenient to the arbitrary
allpass transfer realization. The odd “upper” branch admittances
Y2j, j � 1, 3, 5, … are connected to the auxiliary port of the corre-
sponding odd GICs, and, with respect to the GIC transforming
effect, they behave as the negative ones. The equivalent admittance
of the modified branch is expressed by the equation (9)
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where Y2j(m) – denotes transformed (modified) admittance of jth

branch,
Zij – denotes ith impedance of jth GIC circuit (see Fig. 2),
Y2j – denotes the original jth branch admittance.

As evident the converter impedance Zk1, Zk2 should be of the
same type to save the character of the transformed admittance Zx .
It is easy to derive; the correct circuit behaviour requires arrange-
ment of GIC circuit elements as follows:

Zk1 � R1; Zk2 � R2; Zk3 � R3 ; Zk4 � �
sC

1

4

� . (10)

The resulting transfer function of the improved circuit struc-
ture can be written in the form (11)

where �j – expresses the ratio �j � R2j/R1j , j � 1, 3, 5, …
of i th GIC impedances.

As evident, the odd transfer function coefficients are now
expressed in the form (12), while the even coefficients remain
unchanged and correspond to the expression (6).
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The presented results indicate effective implementation of an
arbitrary order allpass transfer function. With respect to the number
of circuit elements (divider branches) the structure is canonical.

Figure 2: Antoniou’s GIC circuit

Fig. 3: Modified divider structure

H(s) � , (11)
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Note that the special case for the transfer multiplicative constant
h � 1 leads to the minimum number elements realization. The
absolute value coefficient equivalence 

ai � di

compared to the Eqs(6, 12) gives divider branch design conditions

Y1i � 0,  i � 0, 2, 4 …    Y1j � 2Y2j ,  j � 1, 3, 5 … (13)

It is important to say that the divider principle causes a restric-
tion in transfer multiplicative constant value. The appropriate
choice is limited to the unequality h � 1 and cannot be exceeded
by no means.

In the following the particular cases of the 1st- and the 2nd-
order allpass circuits will be discussed in detail.

3. The 1st and 2nd-order allpass

The simpliest version of allpass circuit is presented by 1st-order
divider structure shown in Fig. 4.

The circuit transfer function was found in the form (14)

H(s) � , (14)
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A comparison of the expression (14) to the general form of
1st -order allpass transfer function (15) leads to the simple design
equations (16)
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� � k1, and Y21 represent free parameters and can

be chosen arbitrarily, e.g. with respect to the additional optimized
design conditions.
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Now, let us devote our attention to the 2nd-order allpass. The
circuit diagram is shown in Fig. 5, GICs are implemented by the
mentioned Antoniou’s circuitry – see Fig. 2. Circuit symbolic
transfer function is expressed in the “standard” form (17)
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The transfer function coefficients are expressed by the for-
mulae
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Similarly to the aforementioned 1st-order case, it is possible to
derive design equations of divider branches Yik i,k�1,2 from Eqs.
(18). The result is
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Similarly to the 1st-order case, the values of Y22, ki and �i para-
meters are free and can be conformed to the optimum design con-
ditions. In accordance with the previous considerations and
derived “basic” design formulae (16, 20), the higher-order allpass
can be easily created only by adding next branches to the designed
circuit.

4. Optimized design of the 2nd-order circuit

The presented design equations (20) are fully valid in the case
of an idealized circuit, i.e. the circuit containing idealized active
elements. As known, especially the influence of amplifier finite
frequency dependent gain significantly change the circuit behav-
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Q
0
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0

Fig. 4: 1st-order allpass circuit

Fig. 5: 2nd-order allpass circuit using modified Antoniou’s GIC
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iour, particularly increase the transfer funcion order and vary “main”
poles and zeroes location. From this point-of-view, it is advisable
to use the free design parameters to minimize the influence of
amplifier non-idealities. A detail analysis of this topic was made in
[7], in this place the main results will be summarized and opti-
mized design algorithms presented.

Starting from the allpass general biquadratic transfer function
H(s)

H(s) � �
D
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d
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0
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The design optimization conditions include
• minimization of !p and !z errors,
• minimization of Qp and Qz errors,
• dynamic optimization, i.e. equalization of maximum output volt-

ages of all the amplifiers.

Note that the optimization conditions strongly depend on the
amplifiers type used in Antoniou’s converter circuitry, as docu-
mented in ref.[8]. With respect to the presented results, the tran-
simpedance amplifier (CFOA) has been chosen as the most
suitable for voltage-mode design.

The derivation of general optimization conditions requires to
express parameters of the main poles and zeroes in symbolic form.
But the transfer function of the real circuit is of the 6th-order, con-
sidering simple single-pole models of the amplifiers used. A symbolic
evaluation of the main poles and zeroes then presents a dificult
mathematical task, which can be solved only approximately, despite
the modern mathematical software at disposal. The developed
general algorithm is based on order reduction of the transfer func-
tion numerator and denominator polynomials neglecting the higher-
order error terms. It is formed as follows:
1. Symbolic transfer function of the real circuit is computed under

consideration of finite, frequency independent amplifier gain.
2. Numerator and denominator of the obtained symbolic transfer

function is divided by the highest power of amplifier gain:

N(s) ⇒ �
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where A – means amplifier gain, m – denotes the highest power of A.

3. All the terms of recalculated numerator and denominator poly-
nomials containing power of A higher than 1 are neglected, i.e.
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4. Gain amplifier symbol A in N�(s) and D�(s) is replaced by a fre-
quency dependent relationship

A ⇒ A0 �
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B
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� ,

where B � A0!x , and !x means dominant pole of amplifier gain
frequency response.

5. Expressions of N0(s) and D0(s) are formally rearranged into
a polynomial form and used for simplified transfer function H0(s)
compilation
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6. Numerator and denominator polynomials N�(s) and D�(s) are
decomposed into
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Here !�0p , Q�p represent parameters of “real” main poles, !�0z ,
Q�z “real” main zeroes. �p and �z represent auxiliary “equivalent”
real pole and zero without any importance for the following opti-
mization procedure.

The third-order polynomial decomposition is possible using
mathematical programs, or, in the simplified way using approxi-
mate formulae
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Q
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� , !0pid , Qpid are parameters of the idealized

transfer function (17), resp. (21), expressed in the symbolic form.
The parameter Q�p can be evaluated from Eq. (26)
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Note that the presented simplified equations are valid under
assumption 

�p �� !0p , !0p �� !0pid

for case A, or de1 �� d1id for case B. Similar equations and assump-
tions can be used for the evaluation of the equivalent numerator
parameters �z , !�0z and Q�z . As shown in Ref. [7], the sufficient
accuracy is achieved when B/!0 � 101, with respect to the Q -
factor. The solved numerical examples confirmed small evaluation
errors of de0 � !�02 parameters, even in the case of lower ratios
B/!0 . In the case of parameter de1 or ae1 evaluation accuracy, case
A results show higher values, case B results give lower values of
computed Q – factor in comparison to the exact values. The
acceptable approximation is the average value, i.e. 

de1AB � �
1

2
� (de1A 
 de1B) ,

where the resulting error of the computed Q parameter is under
1% for ratio B/!0 � 15 .

The necessary circuit symbolic analysis and all the symbolic
evaluations including the derivation of symbolic simplified trans-
fer function parameters were made using mathematical program
MAPLE V, release 5.

The optimization procedure alone is based on utilization of
circuit degrees of freedom given by an additional number of
optional circuit elements in comparison to the number of given
design parameters. In the considered case, the optimized circuit
has eight degrees of freedom, with respect to the six given para-
meters of the transfer function (21) and 14 optional passive ele-
ments. In the following, the procedure will be discussed in detail
and the results demonstrated on typical examples.

The basic stage of the optimization procedure includes mini-
mization of the simplified transfer function coefficient errors
(27)1

#(ai) � �
aei

a

�

i(id

a

)

i(id)
� ;  #(di) � �

dei

d

�

i(id

d

)

i(id)
� , i � 0, 1.  (27)

The symbolic form of coefficient errors (27), evaluated using
MAPLE, contains positive and negative terms; i.e. there is possi-
ble to set them to zero. As proved in Ref. [7], three of the main
errors can be zeroized simultaneously in combinations (28).

Note that the conditions (29) give less applicable results. The
first set of conditions leads to the additional design equations for
GIC elements in the form (30)

R21 ��
Y11R11

Y




11R

2
11




R3

Y
1

21R31

� ;  R22 � R12R31 �
Y22 


2

Y12
� ; 

R32 � R21 
 R22 . (30)

The computation was made under choice of k1 � k2 � !0 , in
conformity with the recommendation published in Ref. [8]. It is
important to point out the influence of the non-corrected Q�z –
error, which causes magnitude frequency response distortion in
the vicinity of frequency !0 , as will be shown in the numerical
example. To avoid this, two ways can be used to the fully correct
design:
a) A predistortion of Qz value, making final value errorless. This

way is simple, because the error #(a1) is expressed by formula
(31) evaluated under conditions (30). The improved form of
design equations then includes the expressions (18) and (19)
for transfer function coefficients together with optimization
conditions (28). Note that the equation for coefficient a1 in
(18) is modified in the sense of the Qz predistortion to the
form (32).

�(a1) � ae1 � a1(id) � �
!2
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B

R31
� ; (31)
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R
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1

1

1
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k2 � �
R12R

R
3

2

2

2

C42
� . (32)

The circuit element design formulae computed by MAPLE
give the resulting expressions (33). It is important to say that the
“free” optional parameters (R11, R12) influence circuit dynamic
behaviour and R31 affects frequency response. Unfortunately, the
optimum values of these elements limit to zero and, from practi-
cal design point-of-view, their values should be chosen as small as
possible.

b) The second way uses modified optimization conditions (28),
or (29), which keep the !�0p and !�0z parameters errorless and
make the Q-errors equal, i.e. 

#(d1) � #(a1)  ⇒ #(Q�p) � #(Q�z) .

To avoid an additional group-delay error at frequency !0 caused
by Q-errors, the design can be combined with previously applied
predistortion of coefficients ae1 and de1 .

The corresponding basic set of design equations is shown in
(34).

1 As evident from (23), the coefficient errors indirectly express the errors of !0 and Q parameters as well.

#(a0 � 0; #(d0) � 0; #(d1) � 0  ⇒ #(!�0p) � 0; #(!�0z) � 0; #(Q�p) � 0 , (28)

#(a0 � 0; #(d0) � 0; #(a1) � 0  ⇒ #(!�0p) � 0; #(!�0z) � 0; #(Q�z) � 0 . (29)   
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A symbolic solution of the Eqs. (34) was made using MAPLE.
The free design parameters are the same as in the case a), i. e. Y22 ,
R11 , R31 and R12 .

The discussed design procedure will be now demonstrated on
the numerical example. Let us consider the frequency normalized
allpass transfer function H(s) assigned by parameters h � 1.0,
!0 � 1.0, Q � 4.0,
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s
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proposed to the group-delay equalization in the denormalized fre-
quency range 100 MHz. The circuit realization presumes CFOA
AD 844 as the active element. Normalized amplifier main para-
meters are RT � 400, B � 20.

The simplest design version corresponding to the “basic” design
equations (18), (19), (20) and (30) leads to the divider element
values Y10 � 0, Y11 � 0.50000, Y12 � 0, Y20 � 1.0, Y21 � 8.50000,
Y22 � 1.0 ; and GIC passive RC-network components R11 � 0.25,
R21 � 0.00735, R31 � 0.25, C41 � 0.11765, R12 � 0.25, R22 �
� 0.03125, R32 � 0.03860, C42 � 3.23809.

An obtained circuit analysis confirmed correctness of design
procedure and acceptable accuracy of the developed algorithm for
transfer function order reduction. The evaluated parameters of the
“full” and simplified transfer functions are summarized in the
Table 1.

The non-zero parameter �(a1) causes magnitude frequency
response error �0.446 dB at frequency !0 � 1. Simultaneously
group-delay error #(") � 2.71% arises at the same frequency. 

An improved design procedure using Eqs. (33) gives the follow-
ing results under the same initial conditions (choice R11 � R31 �
� R12 � 0.25, Y22 � 1.0).
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A basic design results Table 1

Function !0p Qp !0z Qz Q�zAB �p �(a1)

ideal 1.0 4.0 1.0 4.0 – – 0

”full” 0.999982 4.000107 1.000001 4.210523 – – 0.0124998

simplified 0.999999 4.000000 1.000024 4.210475 4.210526 69.29936 0.012500
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Element values: Y10 � 0, Y11 � 0.51250, Y12 � 0, Y20 � 1.0,
Y21 � 8.93813, Y22 � 1.0; R11 � 0.25000, R21 � 0.00734, R31 �
� 0.25000, C41 � 0.11747, R12 � 0.25000, R22 � 0.03125, R32 �
� 0.03859 , C42 � 3.23900.

The corresponding magnitude a group-delay frequency respons-
es are shown in Fig. 6, 7. In Fig. 7 the dotted line denotes the fre-
quency response of the predistorted transfer function. 

Class b) design, based on Eqs. (34) gives similar results.
Divider admittance values are Y10 � 0, Y11 � 0.52500, Y12 � 0,
Y20 � 1.0, Y21 � 4.26250, Y22 � 1.0, and GIC passive elements

R11 = 0.25, R21 � 0.015396, R31 � 0.25, C41 � 0.246334 , R12 �
� 0.25 , R22 � 0.0625, R32 � 0.077896, C42 � 3.20941. Note that
the design uses the same values of the optional elements to obtain
comparable results to class a) versions. Similarly to the previous
cases the designed circuit was simulated and analysis results are
summarized in Table 3. For illustration, the " -error frequency
response is shown in Fig. 8 and magnitude frequency response in
Fig. 9. As it can be observed, the correction of magnitude fre-
quency response is worse in comparison to the class a) design.

Resulting parameters with ae1 predistortion Table 2

Function !0p Qp !0z Qz Q�zAB �p "(1)

ideal 1.0 4.0 1.0 4.0 – – 16.00000

”full” 0.999982 4.000107 1.000001 3.999997 – – 16.01271

simplified 0.999999 4.000000 1.000024 3.999951 4.000000 69.301956 16.01271

Parameters of the class b) design Table 3

Function !0p Qp !0z Qz Q�zAB �p "(1)

ideal 1.0 4.0 1.0 4.0 – – 16.00000

”full” 0.999614 4.000916 1.000002 3.999986 – – 16.02677

simplified 0.999637 4.000559 1.000049 3.999899 3.999999 34.608310 16.02677

Fig. 6. Group-delay frequency response Fig. 7. Magnitude frequency response

Fig. 8: Group-delay error response Fig. 9: Magnitude frequency response
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Comparing the evaluated circuit parameters, it is possible to
render some partial conclusions:
• Both the class a) versions give similar results.
• Sensitivity of transfer function parameters to the amplifier GBW

is significantly influenced by suitable chioce of R31 value. This
fact is in agreement with general theory of current-feedback cir-
cuits. The lesser value of R31 makes circuit frequency range
wider.

• Class b) design leads to a higher sensitivity to the amplifier
GBW, which is evident from the comparison of the first parasitic
poles of the resulting “full” transfer function, or indirectly, by
comparing �p values. To improve the frequency properties and
gain conformable results, it is necessary to reduce the R31 value
approximately by half.

The higher stage of the optimized design includes additional
dynamic optimization in the sense of the equalization of amplifier
maximum output voltages. Dynamic analysis disclosed inappro-
priate overshoot of the fourth amplifier output voltage in the vicin-
ity of frequency ! � 1 . To improve circuit dynamic properties, the
set of design equations was extended about conditions (36) express-
ing the request of equal amplifier output voltages at frequency !0

ModA1(!0) � ModA2(!0) � ModA3(!0) � ModA4(!0) . (36)

Here ModAi(!0), i � 1, 2, 3, 4 expresses symbolically evaluated
modul of partial transfer function
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V
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(

j

j

!

!

0

0

)

)
� i � 1, 2, 3, 4 (37)

corresponding to the amplifier outputs at frequency !0 .

A solution of the extended design equations provided the fol-
lowing results:
• The “full” set of equations containing Eqs. (33) and the addi-

tional dynamic conditions (36) is unsolvable, the requests to
the !0 – and Q-errors minimization negate dynamic equaliza-
tion.

• The full dynamic optimization allows only !0z-error zeroing, the
remaining errors are uncorrected. These can be minimized by
a suitable choice of the optional value of R32 , limit value is R32

→ 0.
• Compromise solution including !0p and !0z errors zeroing and

partial dynamic equalization seems to be the most acceptable.
Optimum results were achieved considering conditions

ModA1(!0) � ModA3(!0) � ModA4(!0) .

Maximum output voltage of the 2nd amplifier is in this case
lower than in others. 
• In general, dynamic optimization deteriorates frequency prop-

erties and leads to the higher errors of resulting group-delay and
magnitude frequency responses. A fully acceptable solution is
achievable using a more sophisticated optimization strategy, e.g.
using evolutionary algorithms, or using a current-mode design.

A numerical illustration of the results obtained by using a com-
promise design is shown in table 4. Here the optional parameters
were chosen R31 � 0.125, R32 � 0.75 and Y22 � 1.0. Note that
the ratio R32/R31 influences circuit frequency properties and the
chosen value corresponds to the local optimum. The calculated
dynamic overshoots attain to 
13.5 dB. An additional predistor-
tion of transfer function improving the final parameters was not
made, but it would be possible. Fig. 10 illustrates the results of the
equalization of the amplifier maximum output voltages. As evident,
the simplified approach gives acceptable accuracy of the dynamic
optimization. 

5. Conclusions

The aim of this paper is to mention a new possibility of the
allpass design. The described circuit is original, gained by the
modification of the earlier published general divider structure.
The use of CFOA warrants a wide frequency range, acceptable for
design of phase equalizers in video- or fast-data-signal processing
systems. The developed design procedures give improved solu-
tions without noticeable group-delay and magnitude frequency
response errors.

At this moment multicriterial optimization including circuit
dynamics is not fully solved. This problem is a topic of the future
research and its solution is posible using a current-mode design or
by application of other variants of GIC circuits, e.g. GICs based
on current conveyors.

Circuit parameters for the compromise design Table 4

Function !0p Qp !0z Qz Q�zAB �p "(1)

ideal 1.0 4.0 1.0 4.0 – – 16.716

”full” 0.998381 4.461324 1.000172 4.478866 – – 17.912

simplified 0.998212 4.457200 1.000232 4.479514 4.480210 14.426514 17.912

Fig. 10: Results of the dynamic optimization
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