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1. Introduction

Users of transport systems often declare their interest in veloc-
ity. However, it does not mean technical velocity of transport
means. They concern the “velocity of displacement”, i.e. the dis-
tance between the origin and destination divided by the transport
time. And it is often true that this value is strongly influenced by
coordination between transportation processes.

Let us consider several examples:
A. A passenger travels from the village V to the town W using

first a local train from V to a station S and afterwards an express
train from S to W. It is obvious that the travel time from V to
W is strongly influenced by the waiting time for the train
changing in S and, consequently, by the coordination of the
transport processes of local and express train operation. 

B. A passenger walks from his house H to an urban bus stop S1,
then he/she travels by bus from the stop S1 to the stop S2,
using any from the two routes r1, r2 operating between S1 and
S2 . It is obvious that the total duration of the trip from H to
S2 is strongly influenced by the waiting time for a bus at the
stop S1 and, consequently, by the coordination of the transport
processes on the two routes.

C. A wagon is loaded at a station A and its destination is the
station B. However, it has first to use a train to a marshalling
yard Y and after some manipulations there to use another train
from Y to B. It is obvious that the total duration of the trip
from A to B is strongly influenced by the manipulation time in
Y and, consequently, by the coordination of the processes in Y.

D. A person drives his car from his home H to his office O passing
through a signalized road intersection I. It is obvious that the
total duration of the trip from H to O is strongly influenced by
the waiting time in front of the junction I and, consequently,
by the coordination of the processes at I.

If we consider the cases A., B. and D. we can imagine that the
displacement activities may be more complicated:
A. There may exist many local trains coordinated with several

express trains in several stations.

B. There may exist many routes coordinated at many common legs.
D. There may exist many processes at several junctions to be

coordinated.

The complex problems of optimal coordination can be a bit
simplified introducing a periodicity:
A. To introduce a periodic timetable (a “Takt Fahrplan” in Ger-

man), e.g. to repeat the departures after each hour.
B. To introduce a periodic time table, e.g. to repeat the departures

after each 12 minutes.
C. To introduce a periodic schedule, e.g. to repeat the processes

each day (it was already done in the major part of marshalling
yards).

D. To introduce a “cyclic” mode of operation, i.e. to repeat the
green signals e.g. each 80 seconds (a big part of junctions
work in a periodic regime now).

In the sequel we shall try to formulate the coordination problems
in a general mathematical way.

2. Basic mathematical models

One can find many different periodic point processes (more
precisely: time-point processes) in transportation systems, e.g.:
A. The departures of express trains from the station S1 for the

station S2 are scheduled for 6:42, 7:42, 8:42 etc. This defines
a point process p2 � 6:42, 7:42, 8:42, … � 6:42 � k � 1:00,
k � 1, 2, … (the reason for using p2 will be seen later)

B. The departures of urban transport buses from the stop S1 for
the stop S2 are scheduled for 6:06, 6:18, 6:30, 6:42, etc. p1 �
� 6:06, 6:18, 6:30, 6:42, … �. 6:06 � k � 0:12, k � 1, 2, …

C. Wagon collection process on the sorting siding s1 of a mar-
shalling yard is concluded each 6 hours at 3:20, 9:20, 15:20,
21:20. p1 � 3:20, 9:20, … � 3:20 � k � 6:00, k � 1, 2, …

D. At a signalized road intersection I, the green light start each
80 seconds for the given stream S1 of vehicles e.g. p1 �
� 5:00:12 � k � 0:1:20, k � 1, 2, …
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Usually, the periodic point processes are not isolated. On the
contrary, there exist sets of mutually influenced processes and,
usually again, the processes have either the same period, or the
least common multiple of the periods, which is not very much
greater than they are. For instance:
A. Besides the process p2 we have another process p1 � 6:28,

6:58, 7:28, … � 6:28 � k � 0:30 representing the arrivals of
local trains to the station S1 from the station S3. In this case,
the corresponding periods are p2 � 1:00 � 60 min., p1 � 0:30
� 30 min., the common multiple p � 60 min. � 2 � p1 �
� 1 � p2.

B. Besides the process p1, corresponding to a route r1 we have
another process p2 � 6:00, 6:20, 6:40, … � 6:00 � k � 0:20
representing the departures of buses of another route r2 from
the stop S1 for the stop S3 via the stop S2. In this case, the
corresponding periods are p1 � 0:12 � 12 min., p2 � 0:20 � 20
min., the common multiple p � 60 min. � 5 � p1 � 3 � p2.

C. Besides the process p1, corresponding to the sorting siding s1

we have another process p2 � 1:30, 9:30, … � 1:30 � k � 8:00
corresponding to the sorting siding s2. In this case, the corre-
sponding periods are p1 � 6:00 � 6 h., p2 � 8:00 � 8 h., the
common multiple p � 24 min. � 4 � p1 � 3 � p2.

D. Besides the process p1, corresponding to the stream S1 we
have another process p2 � 5:00:45 � k � 0:1:20, k � 1, 2, …
corresponding to another stream S2, which is in collision with
S1. Here p1 � p2 � p � 80 seconds.

2. Coordination

Having two processes at the same place it is quite natural to
require some type of coordination between them. In general, we
can meet different requirements:

2.1. Single and simple linking. We speak about single linking if
we have two processes p1, p2 with only one linking between them,
e.g. p2 linked to p1, symbolically p1 → p2. We call this linking
simple if both processes have the same number n of time-points in
one period p and the process p2 � t21, t22, …, t2n (� kp) is linked
to the process p1 � t11, t12, …, t1n (� kp). The quality of this
linking can be expressed by the differences d1 � t21 � t11, d2 �
� t22 � t12, …, dn � t2n � t1n put into an objective function f(d1,
d2, …, dn), e.g.

f1(d1, d2, …, dn) � min{d1, d2, …, dn} (greater is better)
f2(d1, d2, …, dn) � max{d1, d2, …, dn} (smaller is better)
f3(d1, d2, …, dn) � max{d1, d2, …, dn} � min{d1, d2, …, dn}
(smaller is better)
f4(d1, d2, …, dn) � d1

2 � d2
2 � … � dn

2 (smaller is better).

Among the abovementioned examples only the A can serve as
the illustration of single linking, but, unfortunately, it is not simple
(we have 2 arrivals within 60 min. but only one departure).

2.2. Double and multiple linking. We speak about double linking
if:
a) We have both p1 → p2 and p2 → p1.

b) There exists another pair p3 → p4.

In the case a) we speak about double mutual linking of the pair
p1, p2.

We speak about multiple linking if there exist more than one
linked pair (i.e. double linking is a particular case of multiple
linking). We suppose we are given a set of time-point periodic
processes P � {p1, p2, …, pm} with periods p1, p2, …, pm and the
common period p � �(p1, p2, …, pm) � the least common multiple
of the periods p1, p2, …, pm. The mutual linking could be expressed
by means of a linking digraph (� oriented graph) G � (V, A),
where the vertex set V � {1, 2, …, m} represents the processes p1,
p2, …, pm, the arc set A represents linking, i.e. the arc a � (i, j) � A
represents linking pj to pi i.e. pi → pj.

Writing the time-point one has to take into account the common
period p, i.e. if a time-point is represented by a number tik then 
tik � {0, 1, …, p} must hold; if not, then it must be reduced mod
p.

2.3. General single linking. We speak about general single
linking p1 → p2 if it is not simple. In the case of general single
linking the processes p1, p2 may have different numbers n1, n2 of
time-points in one period p and the differences di may be calculated
from some selected n-tuples t11, t12, …, t1n, t21, t22, ..., t2n, n � n1,
n � n2.

Especially, if the linking p1 → p2 intends to express a train
changing, we denote T1 the set of all time-points (= arrivals to the
change station plus some time for walking from one train to
another) of the process p1 in one period p and T2 is the set of all
time-points (departures from the change station) p2, but moreover
both the sets T1, T2 are extended by adding the first time-point
from the next period (i.e. we add the time-point t � p where t is
the first time-point from the period p). Then the number n is the
maximum natural number allowing the n-tuples t11, t12, …, t1n, t21,
t22, …, t2n to have the following properties of “closeness”: t1i �
� max{t�T1: t � t2i}, t2i � min{t�T2: t � t1i}. If in such a manner
t1n � t11 � p and t2n � t21 � p then we omit t1n , t2n and we put
n � 1 instead of n.

In our example A we have T1 � {28, 58, 88}, T2 � {42, 102}
corresponding to the local train arrivals 6:28, 6:58, 7:28 and the
express train departures 6:42, 7:42. Obviously, the first value of 
n � 2, t11, t12 � 28, 88, t21, t22 � 42, 102 . However, p � 60 and
both 88 � 28 � p, 102 � 42 � p. Thus, we omit 88, 102 and put
n � 1. t11 � 28, t22 � 42, d1 � 14.

2.4. General multiple linking. We suppose we are given a set
of time-point periodic processes P � {p1, p2, …, pm} with periods
p1, p2, …, pm and the common period p � �(p1, p2, ..., pm) and the
mutual linking expressed by means of a linking digraph G � (V,
A). In the case of general multiple linking we suppose there exists
a general rule determining the number n, the values d1, d2, …, dn

and the objective function f expressing the quality of linking by
means of the value f(d1, d2, …, dn).
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In practice it can happen that these processes are originated
in different locations and their influence represented by a relation
pi → pj “works” in a third location which needs some equalization
of time-points. Usually, we use a value o(i, j) said the offset which
has to be added to the time-points of the process pi before their
comparison with the time-points of pj.

The practical meaning of the offset can be demonstrated on
our examples:
A. Let us suppose that the departures of local trains from the

station S3 are 5:38, 6:08, 6:58, … � 5:38 � k � 0:30 and let
the running time from S3 to S1 be r(S3, S1) � 50 min. Then
the arrivals to S1 are 6:28, 6:58, 7:28, … � 6:28 � k � 0:30
as we supposed above. Moreover, let the departures of express
trains from their origin station S0 be 5:32, 6:32, 7:32 etc., i.e.
5:32 � k � 1:00, just r’(S0, S1) � 1:10 h. � 70 min. before
their departures from S1. Then we can consider the original
processes p1 � 5:38 � k � 0:30, p2 � 5:32 � k � 1:00, the
offset o(1, 2) � r(S3, S1) � r’(S0, S1) � w12 � 50 � 70 � 5 �
� �15 min. Hence the process p2 � 5:32 � k � 1:00 �
� 32 � 60k (with one departure during the common period
p � 60 min.) will be linked to the reduced process pr1 � 5:38 �
� k � 0:30 � o(1, 2) � 38 � 30k � 15 � 23 � 30k (with two
departures during the common period 60 min.). Further cal-
culations will be similar to the ones at the end of the part 2.3.

B. Similarly, the original processes can be represented by the
departures from the terminals of the routes, but the offset will
be exactly the difference of running times from the terminals
to S1 without any further correction. Let, for the simplicity, 
S1 be the terminal for both routes. The “general rule” is the
following: Let T1 � {t1, t2, …, tn} be the set of all departures
of all routes from S1 to S2 within one period p. Suppose that
t1 � …, � tn. Let tn�1 � t1 � p. Then di � ti�1 � ti , i � 1, …,
n. The values d1, d2, …, dn represent the waiting intervals of
the passengers using the segment S1, S2 only.
In our example d1, …, d8 � 6, 12, 2, 10, 10, 2, 12, 6 and:
● f1(6, 12, 2, 10, 10, 2, 12, 6) � min{6, 12, 2, 10, 10, 2, 12,

6} � 2 expresses the danger of collision of two subsequent
vehicles at the same stop,

● f2(6, 12, 2, 10, 10, 2, 12, 6) � max{6, 12, 2, 10, 10, 2, 12,
6} � 12 expresses the maximum waiting time of a passenger,

● 0,5qf4(6, 12, 2, 10, 10, 2, 12, 6) � 0,5q(36 � 144 � 4 �
� 100 � 100 � 4 � 144 � 36) � 284q expresses for one
period the total waiting time (in minutes) of the q passen-
gers, boarding the vehicles during one minute.

C. On the contrary, here no running time will have to be consid-
ered. Instead, the offset o(i, j) will represent the transfer time
for employees and engines to move from the i-th siding to the

j-th one after having finished the works transforming wagons
into a train. The general rule for the calculation of the values
di is similar to the previous one. In our example, neglecting
offsets, we have (in minutes) d1, ..., d7 � 110, 360, 10, 350,
130, 230, 250, but the only objective function having a prac-
tical sense is:
● f1(d1, …, d7) � min{110, 360, 10, 350, 130, 230, 250} � 10

It expresses the shortage of time necessary for the train cre-
ation from the wagons on the siding s1 before the start of
the same works at the siding s2.

D. If the processes pi and pj work at the same intersection then
the offset o(i, j) will represent the duration of green signal for
the stream Si plus the clearing time. If they work at different
intersections then the running time between them will have to
be added.

3. Coordination for changes

Let us turn to our examples. B) concerns the well known
problem of coordination of public transport on common legs. C)
deals with freight train formations and the methods of solution
are similar to the previous ones. D) is the well known problem of
signalised intersections. All three are described by many authors
in many books and papers, see. e.g. the monograph [1]. One can
say that the available methods satisfy the practical needs.

On the other hand the problem A) cannot be considered
satisfactorily solved. In [1] and [2] one can find a heuristics and
a linear programming model for time shift optimization, having
given the set of trains operating on a general network. Other authors,
e.g. [3], study the same problem, but limited to the “herring-bone
type of network” using congruency calculations. 

However, the authors have not yet met any paper dealing with
the coordination problems, optimizing:
a) the size of trains for the given number of trains during the

common period together with their time shifts
b) the number of trains during the common period together with

their size and time positions.

The authors hope they have an idea of solution of the problem
a) using mathematical programming. The problem b) seems to be
open.
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