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NOTE ON THE COORDINATION OF PERIODIC PROCESSES

IN TRANSPORTATION SYSTEMS

The article deals with a coordination of periodic processes in transport systems. It introduces some basic mathematical models useful in
process optimization. It also shows some examples of everyday transport practices where this optimization can be used.

1. Introduction

Users of transport systems often declare their interest in veloc-
ity. However, it does not mean technical velocity of transport
means. They concern the “velocity of displacement”, i.e. the dis-
tance between the origin and destination divided by the transport
time. And it is often true that this value is strongly influenced by
coordination between transportation processes.

Let us consider several examples:

A. A passenger travels from the village V to the town W using
first a local train from V'to a station S and afterwards an express
train from S to W. It is obvious that the travel time from V to
W is strongly influenced by the waiting time for the train
changing in S and, consequently, by the coordination of the
transport processes of local and express train operation.

B. A passenger walks from his house A to an urban bus stop S,
then he/she travels by bus from the stop S, to the stop S,,
using any from the two routes r,, r, operating between S, and
S,. It is obvious that the total duration of the trip from H to
S, is strongly influenced by the waiting time for a bus at the
stop S, and, consequently, by the coordination of the transport
processes on the two routes.

C. A wagon is loaded at a station A and its destination is the
station B. However, it has first to use a train to a marshalling
yard Y and after some manipulations there to use another train
from Y to B. It is obvious that the total duration of the trip
from A to B is strongly influenced by the manipulation time in
Y and, consequently, by the coordination of the processes in Y.

D. A person drives his car from his home H to his office O passing
through a signalized road intersection /. It is obvious that the
total duration of the trip from H to O is strongly influenced by
the waiting time in front of the junction / and, consequently,
by the coordination of the processes at I.

If we consider the cases A., B. and D. we can imagine that the
displacement activities may be more complicated:
A. There may exist many local trains coordinated with several
express trains in several stations.
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B. There may exist many routes coordinated at many common legs.
D. There may exist many processes at several junctions to be
coordinated.

The complex problems of optimal coordination can be a bit
simplified introducing a periodicity:

A. To introduce a periodic timetable (a “Takt Fahrplan” in Ger-
man), e.g. to repeat the departures after each hour.

B. To introduce a periodic time table, e.g. to repeat the departures
after each 12 minutes.

C. To introduce a periodic schedule, e.g. to repeat the processes
each day (it was already done in the major part of marshalling
yards).

D. To introduce a “cyclic” mode of operation, i.e. to repeat the
green signals e.g. each 80 seconds (a big part of junctions
work in a periodic regime now).

In the sequel we shall try to formulate the coordination problems
in a general mathematical way.

2. Basic mathematical models

One can find many different periodic point processes (more
precisely: time-point processes) in transportation systems, e.g.:
A. The departures of express trains from the station S, for the

station S, are scheduled for 6:42, 7:42, 8:42 etc. This defines

a point process p, = 6:42, 7:42, 8:42, ... = 6:42 + k X 1:00,

k =1, 2, ... (the reason for using p2 will be seen later)

B. The departures of urban transport buses from the stop S, for
the stop S, are scheduled for 6:06, 6:18, 6:30, 6:42, etc. p, =
= 6:06, 6:18, 6:30, 6:42, ... =. 6:06 + k X 0:12, k =1, 2, ...

C. Wagon collection process on the sorting siding s; of a mar-
shalling yard is concluded each 6 hours at 3:20, 9:20, 15:20,
21:20. p, = 3:20, 9:20, ... = 3:20 + k X 6:00, k = 1, 2, ...

D. At a signalized road intersection 7, the green light start each
80 seconds for the given stream S, of vehicles e.g. p, =
=5:00:12 + k£ X 0:1:20, k = 1, 2, ...
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Usually, the periodic point processes are not isolated. On the
contrary, there exist sets of mutually influenced processes and,
usually again, the processes have either the same period, or the
least common multiple of the periods, which is not very much
greater than they are. For instance:

A. Besides the process p2 we have another process p; = 6:28,
6:58, 7:28, ... = 6:28 + k X 0:30 representing the arrivals of
local trains to the station S, from the station S;. In this case,
the corresponding periods are p, = 1:00 = 60 min., p, = 0:30
= 30 min., the common multiple p = 60 min. =2 X p, =
=1Xp,.

B. Besides the process p;, corresponding to a route r; we have
another process p, = 6:00, 6:20, 6:40, ... = 6:00 + k£ X 0:20
representing the departures of buses of another route r2 from
the stop S, for the stop S5 via the stop S,. In this case, the
corresponding periods are p; = 0:12 = 12 min., p, = 0:20 = 20
min., the common multiple p = 60 min. = 5 X pl = 3 X p2.

C. Besides the process p,, corresponding to the sorting siding s,
we have another process p, = 1:30, 9:30, ... = 1:30 + k£ X 8:00
corresponding to the sorting siding s,. In this case, the corre-
sponding periods are p, = 6:00 = 6 A., p, = 8:00 = 8§ h., the
common multiple p = 24 min. = 4 X p; = 3 X p,.

D. Besides the process p,, corresponding to the stream S; we
have another process p, = 5:00:45 + k X 0:1:20, k = 1, 2, ...
corresponding to another stream S,, which is in collision with
S,. Here p, = p, = p = 80 seconds.

2. Coordination

Having two processes at the same place it is quite natural to
require some type of coordination between them. In general, we
can meet different requirements:

2.1. Single and simple linking. We speak about single linking if
we have two processes p;, p, with only one linking between them,
e.g. p, linked to p,, symbolically p, — p,. We call this linking
simple if both processes have the same number n of time-points in
one period p and the process p, = ty, tya, - by, (+ kp) is linked
to the process p; = ty;, typ - 11, (+ kp). The quality of this
linking can be expressed by the differences d, = t,; — #;;, d, =
=1y, — ty, ..., d, = 15, — 1}, put into an objective function fd,,
dy, ... d,), eg.

fid,, d, ..., d,) = min{d|, d,, ..., d,} (greater is better)
Hd,, d, ..., d,) = max{d,, d,, ..., d,} (smaller is better)
fd,, dy, ..., d,) = max{d,, d,, .., d,} — min{d,, d,, ..., d,}
(smaller is better)

fildy dyy d,) = di + d3+ ... + d? (smaller is better).

Among the abovementioned examples only the A can serve as
the illustration of single linking, but, unfortunately, it is not simple
(we have 2 arrivals within 60 min. but only one departure).

2.2. Double and multiple linking. We speak about double linking
if:
a) We have both p, —» p, and p, - p;.

b) There exists another pair p; — p,.

In the case a) we speak about double mutual linking of the pair
P> Da-

We speak about multiple linking if there exist more than one
linked pair (i.e. double linking is a particular case of multiple
linking). We suppose we are given a set of time-point periodic
processes P = {p,, py, ..., p,,} With periods p,, p,, ..., p,, and the
common period p = w(py, pa, ..., P,,) = the least common multiple
of the periods py, p», ..., p,,- The mutual linking could be expressed
by means of a linking digraph (= oriented graph) G = (V, A),
where the vertex set V' = {1, 2, ..., m} represents the processes p,
Doy - D the arc set A4 represents linking, i.e. the arca = (i, /) € A
represents linking p; to p;i.e. p; - p;.

Writing the time-point one has to take into account the common
period p, i.e. if a time-point is represented by a number 7, then
tx € {0, 1, ..., p} must hold; if not, then it must be reduced mod
D

2.3. General single linking. We speak about general single
linking p, — p, if it is not simple. In the case of general single
linking the processes p;, p, may have different numbers n,, n, of
time-points in one period p and the differences ¢, may be calculated
from some selected n-tuples 1, f15, «s L1y Lats Lans woes oy =Ny,
n=n,.

Especially, if the linking p, — p, intends to express a train
changing, we denote T the set of all time-points (= arrivals to the
change station plus some time for walking from one train to
another) of the process p, in one period p and 7, is the set of all
time-points (departures from the change station) p,, but moreover
both the sets 7}, T, are extended by adding the first time-point
from the next period (i.e. we add the time-point 7 + p where ¢ is
the first time-point from the period p). Then the number 7 is the
maximum natural number allowing the n-tuples ¢, t,5, ..., t},, t;;
ty9s s 1y, to have the following properties of “closeness™ ¢;; =
=max{t€T: t = t,;), t,; = min{t€T,: t = 1,,}. If in such a manner
ty, =1t +pandt,, =1, + pthen we omit ¢,,, t,, and we put
n — 1 instead of n.

In our example 4 we have T, = {28, 58, 88}, T, = {42, 102}
corresponding to the local train arrivals 6:28, 6:58, 7:28 and the
express train departures 6:42, 7:42. Obviously, the first value of
n=21t,t,=28, 88,1, t,, = 42, 102 . However, p = 60 and
both 88 = 28 + p, 102 = 42 + p. Thus, we omit 88, 102 and put
n=11t,=28t,=42,d, = 14.

2.4. General multiple linking. We suppose we are given a set
of time-point periodic processes P = {p,, p,, ..., p,,} With periods
D1y Dys s D,y and the common period p = w(p,, ps, ..., P,,,) and the
mutual linking expressed by means of a linking digraph G = (V,
A). In the case of general multiple linking we suppose there exists
a general rule determining the number n, the values d,, d,, ..., d,,
and the objective function f expressing the quality of linking by
means of the value f(d}, d,, ..., d,).
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In practice it can happen that these processes are originated
in different locations and their influence represented by a relation
p; — p; “works” in a third location which needs some equalization
of time-points. Usually, we use a value o(i, j) said the offset which
has to be added to the time-points of the process p; before their
comparison with the time-points of p,.

The practical meaning of the offset can be demonstrated on
our examples:

A. Let us suppose that the departures of local trains from the
station S5 are 5:38, 6:08, 6:58, ... = 5:38 + k X 0:30 and let
the running time from S to S| be 7(S;, §;) = 50 min. Then
the arrivals to S, are 6:28, 6:58, 7:28, ... = 6:28 + k X 0:30
as we supposed above. Moreover, let the departures of express
trains from their origin station S, be 5:32, 6:32, 7:32 etc., i.e.
5:32 + k X 1:00, just #'(Sy, S;) = 1:10 h. = 70 min. before
their departures from S,. Then we can consider the original
processes p; = 5:38 + k X 0:30, p, = 5:32 + k X 1:00, the
offseto(1,2) = 1(S;, ;) — r(Se, S;) + w;, =50—70 + 5=
= —15 min. Hence the process p, = 5:32 + k X 1:00 =
= 32 + 60k (with one departure during the common period
p = 60 min.) will be linked to the reduced process p,; = 5:38 +
+ kX 0:30 + o(1,2) = 38 + 30k — 15 = 23 + 30k (with two
departures during the common period 60 min.). Further cal-
culations will be similar to the ones at the end of the part 2.3.

B. Similarly, the original processes can be represented by the
departures from the terminals of the routes, but the offset will
be exactly the difference of running times from the terminals
to S, without any further correction. Let, for the simplicity,
S, be the terminal for both routes. The “general rule” is the
following: Let T, = {1}, 1,, ..., 1,,} be the set of all departures
of all routes from S, to S, within one period p. Suppose that
Hh=.,=t,.Lett,,,=t, +p.Thend, =1, —t,,i=1, ..
n. The values d,, d,, ..., d, represent the waiting intervals of
the passengers using the segment S, S, only.

In our example d,, ..., dg = 6, 12, 2, 10, 10, 2, 12, 6 and:
o f1(6, 12, 2, 10, 10, 2, 12, 6) = min{6, 12, 2, 10, 10, 2, 12,

6} = 2 expresses the danger of collision of two subsequent

vehicles at the same stop,

56, 12, 2, 10, 10, 2, 12, 6) = max{6, 12, 2, 10, 10, 2, 12,

6} = 12 expresses the maximum waiting time of a passenger,

0,5¢/4(6, 12, 2, 10, 10, 2, 12, 6) = 0,5¢(36 + 144 + 4 +

+ 100 + 100 + 4 + 144 + 36) = 284g expresses for one

period the total waiting time (in minutes) of the q passen-

gers, boarding the vehicles during one minute.

C. On the contrary, here no running time will have to be consid-
ered. Instead, the offset o(i, /) will represent the transfer time
for employees and engines to move from the ith siding to the
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Jjth one after having finished the works transforming wagons
into a train. The general rule for the calculation of the values
di is similar to the previous one. In our example, neglecting
offsets, we have (in minutes) d,, ..., d; = 110, 360, 10, 350,
130, 230, 250, but the only objective function having a prac-
tical sense is:

« fi(d,, ..., d7) = min{110, 360, 10, 350, 130, 230, 250} = 10
It expresses the shortage of time necessary for the train cre-
ation from the wagons on the siding s, before the start of
the same works at the siding s,.

D. If the processes p; and p; work at the same intersection then
the offset o(7, j) will represent the duration of green signal for
the stream Si plus the clearing time. If they work at different
intersections then the running time between them will have to
be added.

3. Coordination for changes

Let us turn to our examples. B) concerns the well known
problem of coordination of public transport on common legs. C)
deals with freight train formations and the methods of solution
are similar to the previous ones. D) is the well known problem of
signalised intersections. All three are described by many authors
in many books and papers, see. e.g. the monograph [1]. One can
say that the available methods satisfy the practical needs.

On the other hand the problem A) cannot be considered
satisfactorily solved. In [1] and [2] one can find a heuristics and
a linear programming model for time shift optimization, having
given the set of trains operating on a general network. Other authors,
e.g. [3], study the same problem, but limited to the “herring-bone
type of network” using congruency calculations.

However, the authors have not yet met any paper dealing with

the coordination problems, optimizing:

a) the size of trains for the given number of trains during the
common period together with their time shifts

b) the number of trains during the common period together with
their size and time positions.

The authors hope they have an idea of solution of the problem
a) using mathematical programming. The problem b) seems to be
open.
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