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1. Introduction 

In a static messenger problem (Cordeau, 2006), requirements
of all customers are known before a dispatcher starts to plan the
route. Each customer specifies an origin where the driver has to
pick up the package and a destination for the package delivery.
Distances between all the points in the distribution network are
given. A single vehicle is available for distribution of all the pack-
ages and a capacity of the vehicle is large enough to load all of
them. First, no time windows are considered in the problem. The
objective is to minimize the total length of the route for pick-up
and delivery of all the packages.

Example 1. Figure 1 shows an example of a static messenger
problem with four customers. Each arc in the network corresponds
to the requirement of a customer for delivery. Customers are pur-
posely situated in the even nodes, while destinations in the odd
nodes. If i is a number of the customer, i�1 is a number of its
package destination. A depot of the vehicle is located in node 1. 

2. Optimization model of a static messenger problem 

Let us have n customers; each customer requires delivery of
one package from his office to a specific destination. Considering
one depot in the problem, there are (2n � 1) locations in the dis-

tribution network. Let cij denote the shortest distance between
locations i and j. The mathematical model of a static messenger
problem is defined as follows (Fábry, 2006):

Minimize z � �
2n�1

i�1
�

2n�1

j�1
cij xij , (1)

subject to 

�
2n�1

j�1
xij � 1,      i � 1, 2, …, 2n�1 (2)

�
2n�1

i�1
xij � 1,      j � 1, 2, …, 2n�1 (3)

ui � uj � (2n�1)xij � 2n,  (4)

i � 1, 2, …, 2n�1,  j � 2, 3, …, 2n�1, i � j

u2i � u2i�1,      i � 1, 2, …, n (5)

u1 � 0, (6)

xij � {0,1},      i,j � 1, 2, …, 2n�1 (7)

A binary variable xij equals 1, if the vehicle goes from location
i to location j, 0 otherwise. The objective (1) corresponds to the
total length of the vehicle’s route. The sets of equations (2) and
(3) assure that each location is visited exactly once. Constraints
(4) including variables ui are Miller-Tucker-Zemlin’s inequalities
to avoid partial cycles in the solution. As each package has to be
picked up before its delivery inequalities (5) must be respected.

Figure 2 illustrates the feasible route in the example given
above. The package is delivered to location 9 immediately after its
pick-up in location 8, while the package being picked up in loca-
tion 6 is delivered to location 7 after several vists in other loca-
tions.
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Fig. 1 Example of static messenger problem
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3. Static messenger problem with time windows

In a real messenger problem each customer specifies time
window for both pick-up and delivery of the package. For this
purpose it is necessary to know travelling times tij between all
pairs of locations. The optimization model follows (Fábry, 2006): 

Minimize z � �
2n�1

i�1
�

2n�1

j�1
cij xij , (8)

subject to

�
2n�1

j�1
xij � 1,      i � 1, 2, …, 2n�1, (9)

�
2n�1

i�1
xij � 1,      j � 1, 2, …, 2n�1, (10)

ei � �i � li ,      i � 1, 2, …, 2n�1, (11)

�i � tij � M(1 � xij) � �j ,  (12)

i � 1, 2, …, 2n�1,  j � 2, 3, …, 2n�1, i � j ,

�2i � �2i�1,      i � 1, 2, …, n, (13)

�1 � 0, (14)

xij � {0,1},      i,j � 1, 2, …, 2n�1. (15)

The value of a variable �i determines when the location i is
visited by the vehicle. The objective (8) corresponds to the total
length of the vehicle’s route. The set of constraints (9) and (10)
are taken from the previous model. Parameters ei and li in the
inequalities (11) are the earliest poss�ible and latest acceptable
times of pick-up (in case of even nodes) and delivery (in case of
odd nodes). Inequalities (12) avoiding partial cycles include large
constant M. The constraints assure for each package that its deliv-
ery will follow its pick-up.

In real applications, time windows can be defined in a differ-
ent way. The firm specifies the earliest possible pick-up time and
latest acceptable delivery time that have to be respected:

e2i � �2i ,      i � 1, 2, …, n, (16)

�2i�1 � l2i�1,      i � 1, 2, …, n. (17)

In case the soft time windows are given in the problem it is
possible to consider penalties for time windows violations (Fábry,
2006).

4. Dynamic messenger problem

After finding the optimal solution of the static messenger
problem the vehicle starts to pick up and deliver packages of all
advanced customers. A new requirement for pick-up and delivery
can occur during the travel. These two actions will be integrated
into the current route. In the paper two algorithms are described
for this purpose: insertion method and re-optimization (Fábry,
2006). 

Example 2. Suppose the route in Figure 2 is the optimal solu-
tion of example 1. When the vehicle is travelling from the depot to
location 6, a new customer calls for pick-up of a package in loca-
tion 10 and its delivery to location 11 (see Figure 3).

Insertion algorithm.
Let UN � {i1, i2, …, im} be a sequence of m locations (im � 1)

that have to be visited by the vehicle according to the plan. Denote
by r location where a new package is to be picked up and r � 1
destination to which it must be delivered. If location r is inserted
between the locations ik and ik�1, the destination r � 1 has to be
visited after the pick-up of the package. Two possibilities are con-
sidered:

(1) Destination r � 1 is inserted immediately behind the loca-
tion r (see Figure 4).

the extension of the current route is calculated as follows:

�zk � cik,r � cr,r�1 � cr�1,ik�1
� cik,ik�1

, (18)

k � 1, 2, …, m�1
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Fig. 2 Feasible route

Fig. 3 A new on-line requirement

Fig. 4 Immediate delivery after pick-up of a new package
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The objective is to determine the index t minimizing function
(18):

�z1
t � �zk . (19)

(2) While the location r is inserted between the locations ik
and ik�1, the destination is inserted between the locations is and
is�1. The destination has to be certainly inserted behind the loca-
tion ik�1 (see Figure 5). 

The extension of the route is

�zks � cik,r � cr,ik�1
� cik,ik�1

� cis,r�1 � cr�1,is�1
� cis,is�1

, (20)

k � 1, 2, …, m�2, s � k�1, k�2, …, m�1.         

The objective is to find the following indices t and p: 

�ztp � �zks . (21)

Comparing values (20) and (21), the lower of them determines
the modification of the current route. The application of this strat-
egy is illustrated in Figure 6.

Re-optimization.
Re-optimization algorithm consists in finding the optimal route

of the vehicle after accepting a new request. The current route
including all non-visited locations is re-optimized for the best incor-
poration of pick-up and delivery of the new package. For this
purpose, it is possible to define the following mathematical model:

Minimize z � �
0

i�UN

�
0

j�UN

cij xij , (22)

subject to 

min
k�1,2, …m�2

s�k�1, k�2, …, m�1

min
k�1,2, …m�1

�
0

j�UN

xij � 1,      i � UN , (23)

�
0

i�UN

xij � 1,      j � UN , (24)

ui � uj � ⏐UN⏐ � xij � ⏐UN⏐ � 1, (25)

i � UN , j � UN � {1}, i � j ,

ui2k�1
� ui2k

, i2k�1, i2k � �, k � 1, 2, …, �
⏐�

2

⏐
� �1, (26)

u1 � 0, (27)

x1jnext
� 1, (28)

xij � {0,1},   i,j � UN . (29)

First, the original matrix of distances must be changed. Let
jnext be an index of the location the vehicle is approaching when
a new customer calls. Then, distance c1jnext

between depot 1 and
this location will be adjusted to the value corresponding to the
length of the vehicle’s route that will have been completed at the
location jnext . Set UN contains indices of locations that have not
been visited yet, including depot 1 and two locations for pick-up
and delivery of a new package. A number of all indices is denoted
by ⏐UN⏐. The set includes two following subsets:

(1) the set of pick-up and delivery locations of packages that
have not been picked up yet, 

(2) delivery locations of the packages having been picked up
before reaching the location jnext .

Let denote an increasing sequence of indices from the first of
these sets. If jnext is the index of a pick-up location it will not be
included (together with its delivery point) in the sequence �.
A number of all indices in the sequence denoted by ⏐�⏐ is always
an even value. The set of inequalities (26) is defined just for
members of the sequence to assure each package will be picked up
before its delivery. These constraints have the same relevancy as
restrictions (5) in the static messenger problem.

In example 2 the set UN contains all the indices, i.e. UN � {1,
2, …, 11}. As a new requirement occurs when the vehicle is
approaching location 6, we set jnext � 6. The sequence of indices
of pick-up and delivery locations which package will not be on the
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Fig. 5 Visiting other locations between pick-up and delivery of a new package

Fig. 6 Application of the insertion method
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vehicle after visit location 6 is � � {2, 3, 4, 5, 8, 9, 10, 11}. Using
the optimization model (22) – (29), we obtain the route shown in
Figure 7. 

5. Conclusion

In the paper, two approaches for a dynamic messenger problem
are presented. While re-optimization algorithm can be used for

problems with small numbers of locations that have to be visited,
huge problems need heuristics. The insertion method is offered as
a very simple and effective method. Considering time windows,
the model is much closer to real messenger problems. 

The analysis can be extended if a capacity of the vehicle is
a significant attribute for tour designing (Cordeau, 2006). Several
routes can be offered instead of the only one. In reality, the intro-
duction of multiple vehicles is necessary for completing all requests
in time. Vehicles can be located in one common depot or several
separated depots. Besides the total distance travelled by vehicles,
other criteria can be considered, e.g. total routing cost (Cordeau,
2006), time necessary for delivery of all packages, total profit, etc.

This publication was supported by the project 402/06/0123
funded by the Grant Agency of the Czech Republic.
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Fig. 7 Re-optimization of the route
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