https://doi.org/10.26552/com.C.2009.3.43-48

Peter Tarabek *

COMMINICIONS

A CONTOUR APPROACH TO THINNING ALGORITHMS

Thinning algorithms are widely used in many image processing tasks. Many thinning algorithms were proposed but they usually tend to
process all image pixels in every iteration. Two approaches to contour thinning are described and a short discussion about their features is
given. These approaches can be implemented as sequential or parallel algorithms with different deletion rules. Results of comparison and

analysis are presented in this paper.
Keywords: thinning, skeleton, skeletonization, vectorization

1. Introduction

Many image processing and pattern recognition problems use
thinning as one of the processing step. These problems include vec-
torization of raster maps and engineering drawings [1], character
recognition and analysis [2, 3] and more [4-7]. Thinning belongs
to skeletonization techniques [12] which are used to create a skele-
ton sometimes called medial axis. Like other segmentation techni-
ques, thinning has its advantages and disadvantages. One of the often
mentioned disadvantages is a low computational speed. Although
thinning algorithms are relatively fast compared to other skele-
tonization techniques, they are still slow for some tasks. Many
thinning algorithms were proposed [8, 9, 10, 13] but they usually
tend to process all image pixels in every iteration.

In this paper the thinning technique is briefly described in
section 2. In sections 3 and 4, two approaches to contour thinning
with different rules are presented. Section 5 describes experiments,
section 6 shows results and section 7 presents conclusions.

2. Thinning

Thinning algorithms remove outer pixels layer by layer in iter-
ative process to produce one pixel thick skeleton. The thinning
shows good results for objects, the length of which is much larger
than their thickness. The skeleton is ideal for this type of objects
because it is represented by a set of lines which are a natural rep-
resentation of objects such as roads and characters. The result of
thinning algorithms is a modified binary bitmap which must be
further processed to yield a vector representation. Thinning should
fulfill these requirements:

e Skeleton should be one pixel thick
e Connectivity should be preserved
e Shape and position of the junction points should be preserved

* Peter Tarabek

e Skeleton should lie in the middle of a shape (medial axis)

e Skeleton should be immune to noise (especially to boundary
noise)

e Excessive erosion should be prevented (length of lines and curves
should be preserved)

The nature of thinning algorithms can be parallel or sequen-
tial. Parallel thinning algorithms make their decisions about delet-
ing pixels based on a bitmap resulting from the previous iteration,
while sequential algorithms use an actual bitmap.

3. Contour approach

Pixels in binary images can be divided into 3 categories:
® background pixels

e contour foreground pixels

e other foreground pixels

During each iteration only contour foreground pixels can be
deleted and so no other pixels need to be tested. Contour pixels
usually represent only a small portion of pixels in engineering
drawings and raster maps (especially drawing maps) so when all
pixels are processed a large amount of processing time is wasted.
For example, the image shown in Fig.1 consists of 338 322 pixels,
but contour pixels represent only 12.5% of them.

The base idea of a contour approach is to process only contour
pixels when conditions for deletion are tested. There are several
contour tracing algorithms [14] which can be used in this process.
To be able to describe the contour approach to thinning used in
this paper following definitions are given:

Definition 1: The foreground pixel in a binary image is a black
pixel which is a part of the important object.

Department of Transportation Networks, Faculty of Management Science and Informatics, University of Zilina, Slovakia,

E-mail: Peter.Tarabek@fri.uniza.sk

COMMUNICATIONS 3/2009 o 43

COMMVINICIONS

' 7
) AL
N AR
7 (/ v%o.ﬂ

/
%’:
2%

San B

Fig. 1 Example of drawing map

Definition 2: The background pixel in a binary image is a white
pixel which is a part of the unimportant background.

Definition 3: The 3X3 neighborhood of the pixel P is repre-
sented by the pixels P,-Pg as shown in Fig. 2.

Py [i—1,j—1] P li-1,j] Py fi—1j+1]
Py [i,j—1] P i,] Py [ij+1]
Pg [i+1,j—1] Ps [i+1,]] P, [i+1,j+1]

Fig. 2 Neighborhood of pixel P

Definition 4: The Contour Pixel is the foreground pixel whose
3X 3 neighborhood contains at most 7 foreground pixels.

Definition 5: When contour is processed, the contour pixels are
processed in clockwise order. Let P[i, j] be the processing pixel
and P,[i, j—1] be the previously processed pixel. A successor of
pixel P is the first foreground pixel in its 3X 3 neighborhood found
in clockwise order starting from P, position. This means that the
neighbors of P are processed in the following order: Py, P, P,,
P;. P,, Ps, Py, and P; to find the first foreground pixel. A prede-
cessor is used to find a successor to ensure that the contour pixels
will be processed in right order.

A general contour thinning algorithm can be described in 2
steps:
® recognition of contours
e iterative thinning of contours

In the first step the image is scanned to find contour pixels.
When the contour pixel is recognized the whole contour is traced
using the successor function. This function returns the successor
of current pixel based on definition 5. In order to trace the whole
contour the current pixel is marked as a predecessor and the suc-
cessor is marked as a current pixel after the successor is found.
This process continues until the contour is traced and all the

accessed contour pixels are marked (colored) as used. This pre-
vents from finding the same contour multiple times during the scan-
ning process. To be able to use the successor function two pixels
must be known. When the first pixel of the contour is recognized,
the positions P, Ps, P; and P, are used to find the first background
pixel. This background pixel is marked as a predecessor of the
current pixel so the successor function can be used. Every contour
in the image is stored for further processing by the first recognized
contour pixel and its successor.

After the whole image is scanned, all contours are recognized.
Next, the thinning process can begin. In each iteration, all the con-
tours which were not marked as thinned are processed. The contour
pixels are tested for deletion based on the rules and templates used
by a specific thinning algorithm. A contour is marked as thinned
if none of its contour pixels were marked for deletion in the pre-
vious iteration. When all the contours are marked as thinned the
thinning process is finished.

In Figs. 3 and 4, the results of contour thinning using the basic
deletion rules are shown. These rules mark the pixel for deletion
if its connectivity number (number of black to white translations)
equals to 1 and if the number of the foreground neighbor pixels is
higher than 1 and less than 7.

The contour thinning algorithm based on the presented dele-
tion rules produces distortions in junction points shown in Fig. 4.
This is caused by the successor function which does not recognize
all the contour pixels and produces the contour shown in Fig. 5.
This contour approach to thinning (CT1) has its advantages and
disadvantages. To process the contour, a smaller number of contour
pixels need to be processed and what is more important the suc-
cessor function and the whole algorithm are relatively fast and easy
to implement as will be shown later. The disadvantage of this
approach is a possible distortion in junction points. To deal with
this problem, correct rules for deletion should be used. One pos-
sibility is to use two sub-iterations for pixel deletion allowing to
access contour pixels which were not accessible in first or second
sub-iteration.

44 ¢ COMMUNICATIONS 3/2009

COMMINICIONS

Fig. 3 Skeleton of drawing map

Fig. 4 Distortions in junction points

Another possibility is to improve the successor function to rec-
ognize all contour pixels. This function will use the same definition
of a successor pixel (def. 5), but for all the successors which rep-
resent diagonal neighbors (P,, P4, Py, Pg) of a current pixel, the
next pixel in clockwise order is examined. If this pixel is a fore-
ground pixel it is marked as a successor instead of the original one.
Although this process seems to be easy, the contour approach to
thinning based on such a successor function brings a lot of com-
plications. The first problem is shown in Fig. 6. If the successor

not recognized contour pixels

Fig. 5 Problem of contour pixels recognition function is used, there is a high probability to create an infinite
X P X
P X |P X P

Fig. 6 Infinite loop

COMMUNICATIONS 3/2009 o 45

COMMVINICIONS

loop. In Fig. 6, four successive steps are shown. The current pixel
is represented by ‘P’ and predecessor by X’. When the contour is
processed using this successor function, an infinite loop is created.

So definition 5 of the successor has to be modified in order to
prevent from creating the infinite loops.

Definition 6: When contour is processed, contour pixels are
processed in clockwise order. Let P be the processing pixel, X be
the previously processed pixel and XX be the predecessor from
previous step (where X was actual pixel). The successor of pixel P
is the first foreground pixel from its 3X 3 neighborhood found in
the clockwise order starting from X position which differs from
XX pixel.

A new contour approach to thinning (CT2) can be defined
using the new successor function and the successor definition 6.
This approach uses information about the actual pixel (P), its pre-
decessor (X) and a predecessor from the previous step (XX) to
process contours. Using the information about XX pixel the situ-
ation in Fig. 6 can be solved (see Fig. 7).

XX

4. Implementation problems

Although some problems of CT1 and CT2 approaches were
described in the previous section, there are still other issues to be
solved. Critical points have to be defined before discussing these
problems.

Definition 7: Critical points CP, CX and CXX are pixels which
are stored for each contour and are used to start and stop contour
processing. CP stands for the current pixel, CX stands for the pre-
decessor and CXX represents the predecessor from previous step.

The first problem is to set “stopping rules”. When the contour
is processed, a position of the current pixel P is compared to CP
and a position of the current predecessor X is compared to CX.
When these positions match, processing of the contour is stopped.
In CT2, also the position of XX is compared to CX.

When some of the critical points are deleted, their positions
must be updated for further accurate contour processing. This
process can influence quality of results in place of these critical
points.

XX

Fig. 7 Correct processing of contour

Information about all these pixels must be stored in order to
correctly start and stop processing of contours. Sometimes X and
XX pixels are at the same location. In this case XX pixel needs to
be ignored when the successor function is used. Some other prob-
lems with implementation of CT2 are described in the next
section. The result of CT2 using the same deletion rules as in CT1
is shown in Fig. 8.

Fig. 8 Result of CT2

There are some other issues with deletion rules for both CT1
and CT2. One problem was shown in Figs. 4 and 5. In CT2, the
most important problem is the problem of “staircase pixels”. These
pixels can belong to two contours and when they are deleted by
one contour, critical points of other contour can be deleted too,
making further processing of the second contour impossible. To
deal with this problem we can search through all the contours to
find out if this pixel represents a critical point of other contour or
not. If the result is positive we can update critical points of the
given contour. This process is time consuming. A better approach
is to create rules which keep staircase pixels and remove them in
a post-processing step. Because of the mentioned problems and
some other issues with CT2 implementation, CT2 approach is hard
to implement and its behavior is hard to predict for some cases.
Also it is slower than CT1 so the CT1 approach was tested in
experiments.

5. Experiments

Two tests were used to evaluate the CT1 quality. In both tests
Zhang-Suen thinning algorithm [10] and CT1 are used. Zhang-
Suen algorithm is often used as a reference algorithm and in our
case it represents thinning algorithms which process all the image

46 ¢ COMMUNICATIONS 3/2009

pixels. Another advantage of this algorithm is that it uses two sub-
iterations for pixel deletion. These deletion rules and two sub-iter-
ations process can solve problems shown in Fig. 4 and so they
were used in CT1 for these tests.

Test 1 compares quality of result based on performance mea-
surements proposed in [11], where a thinning rate, number of com-
ponents and noise sensitivity are evaluated. The second test consists
of 4 cases and its purpose is to compare the processing time of
both algorithms based on 4 different parameters of input images.
These parameters represent percentage of background pixels (pBP),
contour pixels (pCP) and non-contour foreground pixels (pFP) and
a number of contours (NC). Detailed information about these
images is shown in Table 1.

Parameters of input images used in test 2 Table 1.
Dimensions pBP pCP pFP NC
Image 1 | 5000%8000 38.4% 7.4% 54.2% 11984
Image 2 | 5000%8000 69.3% 4.0% 26.7% 8270
Image 3 | 5000X8000 38.2% 0.8% 61.0% 138
Image 4 | 5000X8000 64.8% 0.6% 34.6% 155
6. Results

The image shown in Fig. 9 was used for test 1. Performance
measurements show that the results for this input are the same for
both algorithms (see Table 2.). More tests with the same criteria
and manual verification were made. No fundamental differences
were found in these tests.

‘ B pi!
.
T
fp—d
T
{
/“"'IF_
e ——— -
Fig. 9 Input image used in test 1
References

COMMINICIONS

Performance measurements Table 2.
Thinning rate e Noise sensitivity
components
Zhang-Suen 693 1 62
CT1 693 1 62

The results of test 2 are shown in Table 3. For image 1 which
consists of a large number of contours (11 984), the computation
time is approximately the same for both algorithms. As the number
of contours decreases and the number of background and non-
contour foreground pixels increases, CT1 algorithm became faster
than Zhang-Suen thinning algorithm. On the other hand, if images
with more contours were tested, CT1 algorithm would perform
much slower. This means that CT1 algorithm is much faster for
shape objects the length of which is comparable to their thickness.
When dealing with elongated objects, especially with objects the
length of which is much larger than their thickness, the situation is
more complicated. For example, engineering drawings and drawing
maps usually have characteristics similar to image 2. They usually
consist of a large percentage of background pixels, the number of
contours is relatively high and they tend to have a lower percent-
age of non-contour foreground pixels. This situation can differ
from image to image, but CT1 algorithm should perform faster for
majority of them.

Results of test 2 (sec.) Table 3.
Image 1 Image 2 Image 3 Image 4
Zhang-Suen 22.6 16.7 162.6 119.3
CT1 21.6 132 45.9 42.8

7. Conclusion

Two contour thinning principles CT1 and CT2 were presented
in the paper. These approaches represent general principles which
can be used with different deletion and implementation rules. Also
they can be implemented as sequential or parallel algorithms. CT1
seems to be more robust. It can be easier to implement and perform
faster than CT2. In section 6, CT1 and Zhang-Suen algorithms
were compared. The CT1 algorithm was implemented with the same
principles as Zhang-Suen algorithm (parallel nature, the same dele-
tion rules and two sub-iterations). Both algorithms produce a skele-
ton with similar characteristics. Although when it comes to compu-
tational speed, CT1 tends to be faster for majority of input images
(for all the images in our tests), there are still situations where the
classical approach, processing all the pixels in the image, is faster.

[1] GOMIS, J. M., COMPANY, P., GIL, M. A.: Vectorization in Recovering Engineering Drawings. 11 Seminario Italo-Espanol, “Diseno
y fabricabilidad de los productos industriales”, Marina di Equa (Napoli), 24-26 de Junio de 1998.

COMMUNICATIONS o 47

3/2009

COMMVINICIONS

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[91]

ARICA, N., YARMAN-VURAL, F. T.: An Overview of Character Recognition Focused on Off-Line Handwriting. IEEE Trans.
Systems, Man, and Cybernetics-Part C: Applications and Rev., vol. 31, no. 2, pp. 216-233, 2001.

PERVOUCHINE, V., LEEDHAM, G.: Document Examiner Feature Extraction: Thinned vs. Skeletonised Handwriting Images. Pro-
ceedings of The IEEE Region 10 Technical Conference, (TENCONOS), November 2005.

Z0U, J. J., HONG, Y.: Vectorization of cartoon drawings. Selected papers from the Pan-Sydney workshop on Visualisation -
Volume 2, 2000.

AH-SOON, CH., TOMBRE, K.: Variations on the Analysis of Architectural Drawings. Fourth International Conference Document
Analysis and Recognition (ICDAR'97), 1997.

YAO-YI CH., KNOBLOCK, C. A., CHING-CHIEN CH.: Automatic Extraction of Road Intersections from Raster Maps. In Pro-
ceedings of the 13th ACM International Symposium on Advances in Geographic Information Systems, 2005.

HASTHORPE, J., MOUNT, N. J.: The generation of river channel skeletons from binary images using raster thinning algorithms. Pro-
ceedings of the GIScience Research UK 15th Annual Conference, 2007.

NG, G. S., ZHOU, R. W., QUEK, C.: A Novel Single Pass Thinning Algorithm. IEEE Transaction on System Man and Cybernet-
ics, 1994.

BERNARD, T. M., MANZANERA, A.: Improved Low Complexity Fully Parallel Thinning Algorithm. Proceedings of the 10th Inter-
national Conference on Image Analysis and Processing, 1999.

[10] ZHANG, T. Y., SUEN, C. Y.: 4 fast parallel algorithm for thinning digital patterns. Commun. ACM, 27(3), 1984.
[11] TARABEK, P.: Performance measurements of thinning algorithms. Journal of Information, Control and Management Systems, Vol.

6, 2008.

[12] TOMBRE, K., AH-SOON, C., DOSCH, P., MASINI, G., TABBONE, S.: Stable and Robust Vectorization: How to Make the Right

Choices. Graphics Recognition - Recent Advances, 2000.

[13] LAM, L., LEE, S. W., SUEN, C. Y.: Thinning Methodologies - A Comprehensive Survey. IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 14, no. 9, September 1992.

[14] GHUNEIM, A. G.: Contour tracing. Project for the Pattern Recognition course, http://www.imageprocessingplace.com/down-

loads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/index.html

Acknowledgement:
This work has been supported by grant VEGA No. 1/3775/06.

48 ¢ COMMUNICATIONS 3/2009

