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Nomenclature

U root-mean-square (RMS) value of phase voltages
UL-L root-mean-square value of line-to-line voltages
UAC magnitude of AC interlink voltage
UDC direct current supply voltage magnitude
Uemf induced count-vise voltage
Aν amplitude of v-harmonic quantities
ν order of harmonics
f(t) time function
f(t) complex time function
Cv complex amplitude of v-harmonic
C* complex conjugated amplitude
fs switching frequency
PWM pulse-width-modulation
f1 fundamental frequency
ma amplitude modulation ratio
mf frequency modulation ratio
a exp(2π/3)
i, k indexes
DC/AC voltage sourced inverter
AC/AC direct matrix converter
T time period 

1. Introduction

Time domain waveforms of electrical quantities can be either
continuous or discrete, and they can be either periodic or aperiodic.
This defines four types of Fourier transforms: the Fourier series
(continuous, periodic), and the Fourier transform (continuous,

aperiodic) and discrete versions: the Discrete Fourier Transform
– DFT (discrete, periodic), the Discrete Time Fourier Transform
(discrete, aperiodic) [1]–[3]. All four members of the Fourier trans-
form family above can be carried out with either real- or complex
input data. In spite of complex amplitudes of harmonic compo-
nents is notation of Fourier series in complex form more compact
and easier than pure real expressions. This holds true also for
complex Fourier transform which is very close to complex Fourier
series [3]. Both of them, Fourier transform and series, operate
usually with real time functions [4], [5]. The method of complex
conjugated amplitudes has been used for solving of electrical cir-
cuits, and electrical machines, too [6], [7].

However, the output quantities of real power electronic con-
verters can be transformed into complex time functions using Park
or Clarke transform, respectively, as vectors rotating in complex
Gauss plain [8]–[10]. The most advantage of this form of presen-
tation is – in the case of symmetrical sys-tem – that periodicity of
the waveforms in the complex plain is 2m-times higher than in a
real time domain. So, the Fourier analysis, also integral values cal-
culation, can be done more quickly. An-other benefit is possibility
of direct use of complex Fourier transform/series because quantity
func-tions present complex input data for continuous or digital
processing.

2. Non-harmonic waveforms of power converter 
output quantities

Output voltage of a power electronic converter is strongly
non-harmonic because of its switching-, pulse nature. The single-
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phase voltage inverter with full pulse-width has rectangular wave-
form output with high content of harmonic components (more
than 45 %). Three-phase inverters produce three line-to-zero (phase)
and three line-to-line non-harmonic voltages, Fig. 1.

It is known that the conversion coefficient between phase-
and line-to-line harmonic voltages is √3/3, and the magnitude of
fundamental harmonic of phase voltage is by √3/3 less than line-
to-line voltage.

Based on classical Fourier transform the amplitude of funda-
mental harmonic of phase voltage can be calculated:

(1)

where UDC is supply voltage of the inverter.

Fundamental harmonic of line-to-line voltage (see Fig. 1) is
similarly

(2)

so, the amplitudes are the same taking in account the relation
coefficient.

Also, the total harmonic distortion factor (THD) of both volt-
ages is the same. Let’s calculate first the THD of phase voltage

(3)
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where U1 RMS value of fundamental harmonic of the phase voltage
(� A1/√2),

, 

and U is RMS value of phase voltage.

The total harmonic distortion of line-to-line voltage will be the
same

(4)

where 
U and U1 have the same meaning as above, 
U L�L � ��(2�/�3).

Finally, based on total mathematical induction, we can show
that both voltages, phase- and line-to-line, comprise the same harmonic
components.

Proof #1:
General relation for ν-harmonic calculation of line-to-line voltage

(5)

Similarly for phase voltage

(6)

From the initial condition for equivalence of the amplitudes

(7)

we get

(8)

For odd ν-numbers the terms of [cos(ν.π/2)] will be equal to
zero. Then 

(9)

After substitution [1 � cos(ν.π/3)] � 2[cos(ν.π/6).cos(ν.π/6)]
we can obtain
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Fig. 1 Output voltages of three-phase inverter with full-width pulses:
phase – (a) and line-to line voltage (b)
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(10)

Eq. (10) implies that for odd ν-numbers the condition (7) is
fulfilled. 

A paradox of different shape of both voltages is possible to explain
so that the phase-spectra of the voltages are not the same, they are
different. 

3. Using orthogonal output voltages and complex
Fourier analysis

Applying Park/Clarke transform the complex time function
of output phase voltage in three-phase system is

(11)

where after adapting

(12a,b)

It deals with the voltage vectors rotating in Gauss �,�-plain at
an angular speed � which can be also non-constant. 

Now, the voltages u� and u� create an orthogonal system, and
complex Fourier transform can be used. 

So, then the complex Fourier transform or/and complex Fourier
coefficients can be calculated

(13)
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whereby their mutual relation is (13b)

where � � 2�/T.

The discrete Fourier transformation has been used for calcu-
lation of individual harmonics coefficients [3]:

(14)

Alternatively, Euler’s relation can be used to rewrite the forward
transform in a rectangular form:

(14a)

Real and imaginary part of U(ν) can also be expressed:

(15a,b)

Based on the above definition the relation for complex Fourier
coefficients of complex voltage function yields:

(16)

Eq. (16) can be decomposed into two scalar equations for Cν
�

and Cν
�, if needed: 

(16a)

(16b)

Such a Fourier series is developed on the system of orthogo-
nal functions exp(j.n.2�.t/T), n � 0, �1, �2 …, for which the
integral

(16c)

is equal to 0 for m � �n, and equal to T for m � �n.

The system of voltages is ortho-normal, too. Since u� voltage will
contain sin-terms only, the second one u� cos-terms. 

Orthogonal voltage system for a two phase converter system
consisting of two single-phase matrix converters

The orthogonal two-phase converter system comprises two
single-phase converters. Supposing bridge connection single-phase
matrix converter [7], [14] then for its output voltage can be applied
pulse-width modulation (PWM). The second voltage of the 2-phase
orthogonal system, generated by a second single-phase bridge matrix
converter has the same waveform but it is shifted by 90 degrees
(or π/2 respectively) to the right. Thus the complex Fourier trans-
form and analysis described above can be used. However, based on
proof #1 the amplitude spectra Cν� and Cν� of u� and u� will be the
same, so it is enough to calculate only one of them.
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Fig. 2 Orthogonal voltage systems of three-phase inverter with full-width
pulses: direct uα (a) – and quadrature voltage uβ (b)
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The sinusoidal PWM is mature technology which can be clas-
sified into Natural sampled (analogue sinetriangle), regular sampled
(digital sine-triangle) and space vector modulation. The natural
Sampled and regular Sampled also can be divided into two-level
(bipolar) or three-level (unipolar) PWM [5], [11]. There are two
major concerns for generating sinusoidal PWM. The first is to
minimize the creation of low order harmonics in the output voltage.
The second is the mitigation of switching frequency harmonics.
Both these concerns are controlled by the shape of the PWM
pattern which should be controlled to minimize the generation of
switching harmonics and maximum the harmonic cancellation
between the line-line voltages. 

The unipolar PWM was chosen as the best PWM for voltage
control of single-phase inverters considering the output voltage
harmonic spectrum. Normal unipolar sinusoidal PWM is shown
in Fig. 3. 

It can be observed that the area of each pulse corresponds
approximately to the area under the sine-wave between the adja-
cent mid-points of the off-periods. The pulse-width modulated wave
has much lower low/order harmonic content than the other wave-
forms. Generally the synchronous modulation is used. In synchro-
nous modulation the modulation frequency is an integer multiple
of the frequency of reference sine-wave [5], [13]. The turn on (�)
and turn off (�) angles are calculated by the discreet substitution
of the reference sine-wave. 

Both amplitude- and frequency modulation ratios ma and mf

are defined as:

, (17a,b)

where
U1m is reference amplitude of fundamental harmonic,
UAC magnitude of supply voltage,
fs switching frequency,
f1 fundamental frequency.

So, the peak amplitude of the fundamental harmonic compo-
nent (equal to reference voltage) is ma times U, and varies linearly
with ma (providing ma 
 1). If the frequency modulation ratio mf

is sufficiently great, the difference between real values and discrete
values is negligible.

The converter’s output voltage (Fig. 3) can be mathematically
expressed as a Fourier series of the form [5], [12], [13].
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where �k and �k – are turn-on and turn-off angles calculated for
each k-interval by [13]:
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Calculated output voltage for ma � 1, mf � 18 and finite
number of harmonics is depicted in Fig. 4 .

Considering single-phase inverter and unipolar PWM with even
mf . 
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and S
(k) is the area under sinewave during k-switched interval:

(21)

4. Complex Fourier analysis of the voltage of AC/AC
half-bridge matrix converter system 

Due to rather high number of power semiconductor switches
of both converters (totally 8), the half-bridge connection of the
matrix converter is a better solution. The equivalent circuit diagram
of one half-bridge single phase converter (one of two-phase orthog-
onal systems) is depicted in Fig. 6. Since the voltages of the matrix
converter system are orthogonal, the second phase converter is
the same and its voltage is shifted by 90 degree. Due to half-bridge
connection the bipolar PWM should be used.

Contrary to the bridge matrix converter the half-bridge con-
nection doesn’t provide unipolar PWM control, so the bipolar
pulse switching technique should be used. Based on bipolar PWM
control the output orthogonal voltages will be presented in Figs.
8a and 8b. This type of control technique is more complicated
than unipolar type.

Considering bipolar PWM with switching frequency equal to
odd multiply of fundamental frequency. 

Consequently, the harmonics in the converter output voltage
waveform appears as sidebands, centered on the switching fre-
quency fs and its multiples, that is, around harmonics mf , 2 mf , 
3 mf , and so on. This general pattern holds true for all ma smaller
than (or equal to) 1. For a frequency modulation ratio mf �� 9
(which is our case), the harmonic amplitudes are almost indepen-
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dent on mf, though mf defines the frequencies at which they occur.
Theoretically, the frequencies at which voltage harmonics occur
can be defined as

, (22)

that is, the harmonic order v corresponds to the y-th sideband of
the x-times the frequency modulation ratio mf

, (22a)

where the fundamental harmonic frequency corresponds to ν � 1.
For odd values of x, the harmonics exist only for even value of y,
and opposite, for even values of x, the harmonics exist only for
odd value of y. 

Choosing the frequency modulation ratio mf as odd integer
results in an odd symmetry [u(�t) � �u(t)] as well as half-wave
symmetry [u(�t) � �u(t � Ts/2)] with the time origin shown in
Figs. 3 or 4. Therefore, only odd harmonics are present and the
even harmonics disappear from the wave form of ua. Moreover,
only the coefficients of the sine series in Fourier analysis are finite;
those for the cosine series are zero.

The harmonic spectrum is plotted in Fig. 7, which is plotted
for mf � 39.

For the parameters (the same as in [11] to be compared): 

Zx UDC � 300 V – input voltage,
fIN � fS � 39 kHz – switching frequency,
fOUT � 50 Hz – fundamental output frequency,
ma � 1; mf � 39 – amplitude and frequency ratios,

v x m y ff 1$ ! $= _ i

f x m y fv f 1$ ! $= _ i

Fig. 6 Circuit diagram of single-phase half-bridge matrix converter

o

o o

Fig. 7 Harmonic amplitude spectrum of bipolar PWM with odd mf

Then total voltage time waveform will be:

(19)

where ts(k) is the switching instant at k-interval: 
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where the switching instant is equal to:

(24)

and the area under sinewave is the same as using unipolar PWM
(see Eq. 21).

5. Current harmonics investigation under resistive-
inductive load with Uemf

Current time-waveforms for a fundamental harmonic compo-
nent in steady-state iS1(t) is [12]:

(26)

Current time-waveforms for higher-harmonic components in
steady-state iSν(t) are given [12]

(27)

where:
Av � A1 ! Cv(v) – amplitude of ν-harmonic voltage component

extracted from Eq, (23), 
A1 � ma ! UAC – amplitude of 1. harmonic voltage component, 
Uemf – counter-voltage (of electromagnetic force)

– module of complex impedance
of resistive-inductive load 

�v � arctan(v.�.L/R) – argument of complex impedance of resis-
tive-inductive load

CI(ν) – Fourier coefficient of ν -harmonic current component,
Iv – amplitude of ν -harmonic current component.

Harmonic current components can be computed similarly
using above methodology and work [12]. The accurate calculation
of Uemf can be obtained by using the motor circle diagram. The
total current in steady-state will be summarisation of single har-
monics.

The Fourier analysis can be used also for investigation of
behaviour of the system in transient state. The total current of ν-har-
monic component iν will be summarisation of current in steady-
state iSν and current in the transient phenomenon iTν

(28)
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the amplitudes of the first 30 voltage harmonics (by 165th-har-
monic) were calculated: 

A1 � 150.ma � 150 V; A39 � 90.16 V; A39�2 � A39�2 � 47.70 V;
A39�4 � A39�4 � 2.70 V; 
A78�1 � A78�1 � 27.15 V; A78�3 � A78�3 � 31.80 V; 
A78�5 � A78�5 � 4.95 V; A117 � 16.95 V; 
A117�2 � A117�2 � 9.30 V; A117�4 � A117�4 � 23.55 V; 
A117�6 � A117�6 � 6.60 V; A156�1 � A156�1 � 10.20 V; 
A156�3 � A156�3 � 1.35 V; A156�5 � A156�5 � 17.85 V; 
A156�7 � A156�7 � 7.50 V;

Note: The carried-out results are identical with those given in
[11] for DC/AC inverter with bipolar sinusoidal PWM. 

Considering bipolar PWM with switching frequency equal to
even multiply of fundamental frequency. 

The orthogonal voltages with bipolar PWM control are depicted
in Figs. 8a, b.

It deals with sinusoidal bipolar pulse-width-modulation con-
trary to unipolar regular PWM [5], [11]. Switching-pulse-width
can be determined based on equivalence of the average values of
reference waveform and resulting average value of positive and
negative switching pulses area during a switching period (see Figs.
5a, b and 8a, b).

Then, the total voltage time waveform will be:

(23)
cos cos

cos cos sin

u t v
U

v k m v k m v t k

v k m v t k v k m v t

4 2 2

1
2 2

/
DC

v f f
s

k

m

f
s

f

1 0

4 1f

$

$
$ $ $ $ $ $

$ $ $ $ $ $ $ $ $

r
r r

~

r
~

r
~

= - + -

+ - --

3

= =

-

^ d ^d

^ ^d d ^

_

h n hn

h hn n h

i

>

>

H

H

*

4

/ /

b)
Fig. 8 Output orthogonal voltages of the half-bridge matrix converter

system with bipolar pulse-width-modulation: direct (a) 
and quadrature one (b)

a)



29C O M M U N I C A T I O N S    1 / 2 0 1 0   �

where iν is total current waveform
iSν steady-state component of total current
iTν transient component of total current
τ � R/L – time constant of resistive-inductance load.

Total current as well as both components should be calcu-
lated for each harmonic. 

6. PC simulation in MatLab programming environment

The MatLab programming environment was used for simula-
tion. Simulation experiments were done for the parameters: R �
� 0.1275 Ohm, L � 21.6 mH, UAC � 12 V, f � 100 Hz at ma � 1,
mf � 100, Uemf � 0.1–0.9 of A1, time increment Δt � 0.5 μs. 

The graphic interpretation of steady-state is shown in Figs. 9a,
b.

Time wave-forms of currents for transient-state and various
time constants are depicted in Fig. 10.

7. Conclusions

The complex Fourier transformation was considered for three-
and two phase orthogonal systems of converter output voltages,
strongly non-harmonic ones. The solution given in the paper makes
it possible to analyse more exactly the effect of each harmonic
component comprised in the total waveform on resistive-inductive
load or induction motor quantities. The proposed system with AC
interlink in comparison with currently used conventional systems
uses two single phase half bridge matrix converters with bipolar
pulse-width modulation. The advantage is then less number of semi-
conductor devices of the converters. However, in practice, the nec-
essary imposition of a dead-band, or blanking time, results in some
distortion of the output voltage. Then, the dead-band, its symp-
toms and related remedies, are necessary to take into account for
solutions.
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Fig. 9 Output orthogonal voltages of the half-bridge matrix converter
system with bipolar pulse-width-modulation and ma = 0.2, 0.4, 0.6, 0.8,

direct phase-(a) and quadrature phase voltage (b)

Fig. 10 Voltage of the half-bridge matrix converter and time waveforms
of transient currents for L/R = 0.17 s, 0.04 s, 0.01 s, 52 ms, 14 ms 
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