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1. Introduction

Interval estimation of a binomial proportion is one of the basic
problems in statistics. In technical practice the binomial propor-
tion is often used in statistical quality control.

Let random variable X follow a binomial distribution with
parameters n � N and � � (0,1), abbreviated X � Bi(n,�). The
probability that a random variable X is equal to the value x is given
by 

(1)

The parameter � is also called binomial proportion. In practice
the value of the parameter � is usually unknown and must be esti-
mated from a sample. Let X be a number of successes in a random
sample of size n. The maximum likelihood estimator for from the
sample is p � X/n. This estimator is unbiased and consistent. The
100!(1��)% two-sided confidence interval for parameter � is an
interval �pL, pU� such as P(pL � � � pU) 
 1 � �, where (1��)
is the desired confidence coefficient, � � (0,1).

Due to the discrete nature of the binomial distribution the inter-
val estimation of binomial proportion is a complicated problem.
The standard Wald interval (Laplace, 1812) and the exact Clopper-
Pearson interval (Clopper - Pearson, 1934) are the most common
and most frequently used intervals. They are presented in the major-
ity of statistical literature. The standard Wald interval (Wald) is
based on the standard normal approximation to the binomial dis-
tribution. This interval is simple to compute, it is narrow, but the
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interval has a poor performance. It is known that its coverage
probability behaves irregularly even when  is not close to 0 and 1.
The coverage probability is below a nominal level even for very
large sample sizes. It is known that Wald interval has a problem
with the zero width interval and overshoot (the lower bound can
be below 0 and the upper bound can be above 1). Many autors
have pointed out that this interval should not be used (Vollset, 1993,
Newcombe, 1998, Brown, Cai, DasGupta, 2001, Pires, Amado,
2008).

The exact Clopper-Pearson interval is based on the exact
binomial distribution. This interval eliminates overshoot and zero
width intervals and it is known that this interval is strictly conser-
vative and too wide (Newcombe, 1998, Brown, Cai, DasGupta,
2001, Pires, Amado, 2008). Its coverage probability is always equal
to or above the nominal level. 

In this paper we recommend the alternatives of confidence
intervals for binomial proportion that have better performance and
are often used in practice, but they are presented sporadically in
the basic statistical literature. Here we consider the confidence
intervals methods that are based on the standard normal approxi-
mation: Wilson score interval (Wilson), Wilson score interval with
continuity correction (Wilson+CC), Agresti-Coull interval (Agresti-
Coull), and finally the interval that is based on the Bayesian
approach: Jeffreys interval (Jeffreys).

We demonstrate the performance of selected alternatives of
confidence intervals. For comparison we use common criteria:
coverage probability, average coverage probability, conservatism,
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interval length, average expected length, root mean square error.
We summarize the results for the coverage probability in terms of
the observed minimum coverage probability and the average cov-
erage probability and we classify the alternatives of confidence
intervals into two classes of acceptable intervals- strictly conserv-
ative intervals and intervals that are not strictly conservative, but
conservative on average. 

Our recommendation of these selected alternatives of confi-
dence intervals is based on our investigations of these intervals
and on the existing comparative studies that were presented in
recent statistical literature, see e. g. Newcombe (1998), Brown,
Cai, DasGupta (2001) and Pires, Amado (2008). 

2. Alternatives of Confidence Intervals

Clopper – Pearson interval. The exact Clopper – Pearson inter-
val (Clopper – Pearson, 1934) is based on inverting two-sided bino-
mial tests on the null hypothesis H0 : � � �0 against the alternative
H1 : � � �0. If X � x is observed, the lower and upper bounds are
the solutions of the equations

(2)

The lower and upper bounds of 100!(1��)% Clopper – Pearson
interval for 0 � X � n are

(3)

where F�(k1, k2) is the �–quantile of F–distribution with k1 and 

k2 degrees of freedom. For X � 0 is pL � 0 and . 

For X � n is and pU � 1.

Wald interval. Wald interval (Laplace, 1812) is based on invert-
ing Wald test and is obtained by using the Central Limit Theorem 
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that the random variable is approx-

imately standard normally distributed N(0,1). Thus the lower and
upper bounds of 100!(1��)% Wald interval are 

(4)

where k� is the �–quantile of standard normal distribution N(0,1).

Wilson score interval. Wilson score interval (Wilson, 1927) is 

obtained by noting that the random variable 

is approximately standard normally distributed N(0,1). The lower
and upper bounds are the solutions of the equation (p � π)2 �

. The lower and upper bounds of 100!(1��)%

Wilson scoreinterval for 0 � X � n are 

(5)

where k� is the �–quantile of standard normal N(0,1) distribution.

For X � 0 is pL � 0, for X � n is pU � 1.

Wilson score interval with continuity correction. The continuity
correction suggested by Blyth and Still (1983). The lower and upper
bounds for 0 � X � n are

where k� is the �–quantile of standard normal N(0,1) distribution .

For X � 0 is pL � 0, for X � n is pU � 1.

Agresti – Coull interval. Agresti and Coull (1998) introduced
a slight modification of the Wald interval by adding two successes 
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and two failures. The point estimator of � is then .  

The lower and upper bounds of 100!(1��)% Agresti – Coull inter-
val are

(7)

where k� is the �–quantile of standard normal distribution N(0,1).

Jeffreys interval. This interval is based on the Bayesian
approach. Beta–distribution is conjugate priors for binomial dis-
tribution. Let random variable X � Bi(n,�) and � � Beta(k1,k2).
Then the posterior distribution of � is Beta(x � k1, n � x � k2).
Thus 100!(1��)% Bayesian interval is

It is known that non-informative Jeffreys prior is . 

Then the lower and upper bounds of 100!(1��)% Jeffreys inter-
val are 

(8)

where Beta(k1,k2) is the �–quantile of Beta–distribution with k1

and k2 degrees of freedom.

For X � 0 is pL � 0, for X � n is pU � 1.

3. Criteria for Comparing the Confidence Intervals

In this section we introduce the criteria that are used for com-
paring the confidence intervals.

Coverage Probability. For the fixed values n and � the coverage
probability is the probability that the confidence interval CI(X, n)
contains the parameter �. The coverage probability is defined for
the given n and � as

(9)

where 0 � π � 1, .

The confidence interval is strictly conservative, if C(n,π) 


 1 � � for all π.

Due to the discrete nature of the binomial distribution the
coverage probability can not be exactly equal to the nominal level
(1 � �) at all possible values. Therefore, our goal is to construct
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such a confidence interval for the parameter π that the coverage
probability is near the nominal level (1 � �).

Average Coverage Probability. The average coverage probabil-
ity (AVEC) for the uniform averaging of the parameter values is
defined as  

. (10)

The confidence interval is conservative on average, if
AVEC(n) 
 1 � �.

Expected Length. The expected length of the confidence inter-
val is defined as 

(11)

where pL(x,n), pU(x,n) are lower and upper bounds of a particular
confidence interval.

This criterion measures the confidence interval length. In addi-
tion to the coverage probability the interval length is important for
evaluating the confidence interval. The confidence interval is better
if it has a shorter expected interval length with the similar perfor-
mance of the other criteria.

Average Expected Length. The average expected length (AVEL)
of the confidence interval is defined as 

. (12)

Root Mean Square Error. The root mean square error (RMSE)
is defined as

(13)

This criterion is used to describe how far the coverage proba-
bility typically falls from the nominal level. This criterion measures
the variability of coverage probability about the nominal level 
(1 � �).

4. Comparsion of Confidence Intervals 

In this section we demonstrate the performance of the confi-
dence intervals which are compared in terms of the criteria men-
tioned above. The coverage probability, conservatism and interval
length are important for evaluating the confidence intervals. To
evaluate and compare the performance of confidence intervals the
coverage probability was computed in 2001 values equally spaced
in the interval �0,1� for n � 1 to 1 000 and for � � 0.05. The cal-
culations were performed in Matlab. As it is impossible to analyze
a large number of plots we sumarize the results for the coverage
probability in terms of the observed minimum coverage probabil-
ity and AVEC. The confidence intervals were grouped into two
classes of acceptable intervals:
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1. strictly conservative intervals – intervals that have the minimum
coverage probability at the least nominal level (1 � �), for all
n and for all .

2. not strictly conservative intervals, but conservative on average
– intervals whose average coverage probability is at the least
nominal level (1 � �), for all n : AVEC(n) 
 1 � �.

In the first class such a confidence interval is ideal whose
minimum coverage probability is equal or a little above the nominal

: ,min C n 1$r r a-
r

^ h

level (1 � �). In the second class such a confidence interval is
ideal whose AVEC is equal or a little above the nominal level 
(1 � �) and minimum coverage probability is little below the
nominal level (1 � �). A shorter expected length and a smaller
average expected length is preferred.

Coverage probability. Fig. 1 shows the coverage probabilities
of  95% confidence intervals for the case n � 50. The figures for
other values of n are similar to this figure. It is evident why the
Wald performs poorly and why the Clopper-Pearson is known as

Fig. 1 Coverage probability of 95% confidence intervals for n � 50

Fig. 2 Minimum coverage probability of 95% confidence intervals for n � 1 to 1 000



35C O M M U N I C A T I O N S    1 / 2 0 1 0   �

an overly conservative interval. The Clopper-Pearson guarantees
that the coverage probability is always equal to or above the nominal
level (1 � �). The coverage probability of the Wald is very poor
for π near boundaries 0 and 1. The problems with coverage prob-
ability exist even for n large. This interval has more chaotic prop-
erties and can not be used (Brown, Cai, DasGupta, 2001). The
Wilson has coverage probability which fluctuates near the nominal
level (1 � �). As n gets larger it comes to the significant improve-
ment. The coverage probability near to boundaries 0 and 1 is prob-
lematic. The Wilson+CC falls into conservative intervals, with
performance similar to the Clopper-Pearson. In comparsion to
the Clopper-Pearson, the Clopper-Pearson is more conservative for
π near 0 and 1. The Agresti-Coull is even more conservative espe-
cially for n small. In comparsion to the Wilson, the coverage prob-
ability is as good as the Wilson, but the Agresti-Coull is quite
conservative for π near the boundaries. The Jeffreys has a coverage
probability qualitatively similar to the Wilson. Its coverage proba-
bility is reasonable, except for the very deep spikes near 0 and 1.
As n gets larger it comes to the improvement. Fig. 2 shows the
minimum coverage probabilities of 95% confidence intervals for 
n � 1 to 1 000. 

Average coverage probability. Fig. 3 shows the AVEC for n � 1
to 100. As it is showed in the figure the AVEC of the Wald tends
to be under other intervals and under the nominal level (1 � �)
for all values of n. The Clopper-Pearson and the Wilson+CC are
comparable intervals and are too conservative on average. The
Clopper-Pearson tends to be higher than other intervals and above
the nominal level (1 � �) for all values of n. The Agresti-Coull is
slightly conservative on average. The Wilson and the Jeffreys have
the AVEC quite close the nominal level (1 � �) for most of values
n, the Wilson even for n small.

Expected length. Fig. 4 shows the expected lengths of 95%
confidence intervals for case n � 50. The figures for other values
of n are similar to this figure. It is evident that the Clopper-Pearson
and the Wilson+CC are wider than other intervals. For π moder-
ate the Wilson+CC is shorter. For π small or large the Wald is the
shortest. The Jeffreys and the Wilson are comparable intervals

with a relatively small width. The Jeffreys performs better. The
Agresti-Coull is quite wide. For π moderate the Agresti-Coull, the
Wilson and the Jeffreys are narrower than other intervals. 

Average expected length. Fig. 5 shows the AVEL of 95% con-
fidence intervals for n � 1 to 100. As it is showed in the figure the
Clopper-Pearson and the Wilson+CC are comparable intervals
and their AVEL is the biggest of all the intervals. The Wilson and
the Jeffreys are comparable intervals. In comparsion to them the
Agresti-Coull is larger for n small. From the given figure it is evident
that as n gets larger the difference between intervals starts to wear
off.

Root mean absolute square error. Fig. 6 shows the RMSE of
95% confidence intervals for n � 1 to 100. It is evident that the
RMSE of the Wald is much larger than the other intervals. The
Clopper-Pearson and the Wilson+CC are comparable intervals,
the RMSE of the Clopper-Pearson is slightly larger than the
Wilson+CC. The RMSE of the Jeffreys and the Agresti-Coull are
comparable. The Wilson has the smalltest RMSE.

Fig. 3 Average coverage probability of 95% confidence intervals for 
n � 1 to 100

Fig. 4 Expected length of 95% confidence intervals for n � 50

Fig. 5 Average expected length of 95% confidence intervals for 
n � 1 to 100
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5. Concluding Remarks

In this section we summarize the classification and performance
of the alternatives of confidence intervals. 

The Wald interval should not be used. It performs poorly in
terms of the coverage probability and the RMSE, though the
expected length is short. In comparsion to the Wald all the inter-
vals mentioned above outperform the Wald. 

From the alternatives of confidence intervals mentioned above
only the Clopper-Pearson is strictly conservative. The Clopper-
Pearson guarantees the minimum coverage probability which is
equal to or is above the nominal level. This interval is too conser-
vative on average, too wide and has the larger RMSE. 

The other confidence intervals the Wilson, the Wilson+CC,
the Agresti-Coull and the Jeffreys are not strictly conservative, but
are conservative on average.

The Wilson and the Jeffreys have similar properties such as
a relatively small length, comparable AVEL and RMSE. The
Wilson has excellent properties, the coverage probability near the
nominal level, except for the problems with the coverage proba-
bility for values near 0 and 1 that makes a very low minimum cov-
erage probability. Similar problems with the minimum coverage
probability exist for the Jeffreys due to unlucky deep spikes near
boundaries 0 and 1. But otherwise the Jeffreys has also good prop-
erties.

The Agresti-Coull has the minimum coverage probability better
than others. To compare it to the intervals in this class, except for
the Wilson+CC, the Agresti-Coull is slightly conservative and wider
on average, but its advantages are easy calculation and presenta-
tion.

The Wilson+CC is similar to the Clopper-Pearson. It is too
conservative on average, wide and has the larger RMSE. This inter-
val is almost strictly conservative. The coverage probability for
some values that are near boundaries 0 and 1 is slightly below the
nominal level. (For example, for n � 15, � � 0.003485, � � 0.05
is C(n,�) � 0.9490.)

Which method should be used in practical applications? The
choice from the alternatives depends on the situation where they
should be used and on preferences of users. The strictly conserv-
ative Clopper-Pearson is a choice for a situation when the cover-
age probability must be guaranteed to be equal to or above the
nominal level. Otherwise if strict conservativeness is not a major
criterion, the preference is to use the confidence intervals which
are conservative on average, and their coverage probability is
quite close the nominal level and are narrower. The almost strict
Wilson+CC is also a valid choice. The Jeffreys is also an appro-
priate choice for practice but it is more complicated to compute.
Considering  properties of alternatives of the confidence intervals
the Wilson and the Agresti-Coull are the best choice in this class.
They perform very well and are simple to compute.

Fig. 6 Root mean square error of 95% confidence intervals for 
n � 1 to 100

The comparsion of 95% confidence intervals in terms of Table 1.
minimum coverage probability (MCP), average coverage 
probability (AVEC), root mean square error (RMSE) and 
average expected length (AVEL) for n � 10, 30, 50, 100, 500, 1 000. 

Methods MCP AVEC RMSE AVEL

n�10 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9610
0.0050
0.8382
0.9511
0.9168
0.8681

0.9837
0.7696
0.9540
0.9819
0.9638
0.9531

0.0349
0.2858
0.0218
0.0330
0.0217
0.0244

0.5085
0.4035
0.4354
0.5043
0.4565
0.4326

n�30 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9506
0.0149
0.8475
0.9528
0.9339
0.8887

0.9734
0.8753
0.9525
0.9730
0.9599
0.9505

0.0256
0.1674
0.0141
0.0245
0.0163
0.0172

0.2990
0.2663
0.2708
0.2998
0.2789
0.2687

n�50 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9509
0.0247
0.8392
0.9512
0.9345
0.8842

0.9692
0.9009
0.9516
0.9693
0.9578
0.9502

0.0215
0.1299
0.0118
0.2008
0.0141
0.0135

0.2306
0.2113
0.2129
0.2313
0.2177
0.2117

n�100 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9504
0.0488
0.8606
0.9512
0.9390
0.8806

0.9646
0.9226
0.9510
0.9647
0.9664
0.9499

0.0169
0.0915
0.0087
0.0164
0.0113
0.0098

0.1614
0.1518
0.1523
0.1619
0.1543
0.1517

n�500 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9503
0.2212
0.9099
0.9502
0.9448
0.9145

0.9573
0.9434
0.9504
0.9573
0.9519
0.9499

0.0091
0.0382
0.0041
0.0087
0.0059
0.0046

0.0706
0.0687
0.0687
0.0707
0.0689
0.0686

n�1000 Clopper-Pearson
Wald
Wilson
Wilson+CC
Agresti-Coull
Jeffreys

0.9501
0.3934
0.9098
0.9501
0.9453
0.9172

0.9551
0.9464
0.9501
0.9552
0.9511
0.9499

0.0068
0.0243
0.0041
0.0070
0.0045
0.0040

0.0496
0.0486
0.0486
0.0496
0.0487
0.0486
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These recommended confidence intervals are much better to
guarantee the estimation of a binomial proportion when compared
with the standard and frequently used Wald interval. 
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