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1. Introduction

Nowadays it is almost impossible to pick up a journal or con-
ference focused on computational mechanics that doesn’t contain
some reference to structural optimizing. Although it is possible to
design machine parameters by experience it is much better and
more effective to predict the basic properties of the new designed
structure by using optimizing procedure which is generally based
on a series of controlled computing analyses [1].

2. Chosen methods for multiaxial fatigue damage
prediction 

To calculate the structural mass (or volume) is not a compli-
cated problem but the constrain conditions usually depend on FE
analysis, identification of a “damage” critical points and multiaxial
fatigue prediction [12]. Let’s now focus on the cumulative damage
counting by using multiaxial rainflow decomposition of the stress
response. It should be noted [4, 12] that the fatigue damage cal-
culation of the machine parts is generally problematic because the
results are considerable changed in the principal stresses [2, 5].
Using FE analysis we can get six components of the stress-time
function (multiaxial stress) but it is very difficult to obtain an equiv-
alent – uniaxial load spectrum by reason of comparison with applied
computational fatigue curve. In our case the rainflow analysis for
random stresses known in classic uniaxial form as von Mises or
Tresca hypotheses is impossible. It means that the important goal
of this part will be to propose some approaches to estimate the
high-cycle fatigue damage for multiaxial stresses caused by random
vibration analysed structure [7, 11]. Generally we can apply two
fundamental approaches for multiaxial rainflow counting:
� Critical Plane Approach (CPA) [11] and
� Integral Approach (IA) [7].

It is well-known that the Wöhler curve (Fig. 1, sometimes
called S-2N curve) is basic source of getting information of the
material fatigue life. Generally the S-2N curve is statistically eval-
uated by experimental fatigue curve. This is a graph of the magni-
tude of a cyclical nominal stress σA against the logarithmic scale
of cycles to failure 2Nf . It is advantage to show it in logarithmical
or semi logarithmical coordinates.

The σA � 2Nf relation can be written as follows  

, (1)

where σf is the fatigue stress coefficient, 2Nf is number of cycles
to failure, b is fatigue strength exponent and σA is stress amplitude
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to failure. Some researches rewrite the relationship (1) into fol-
lowing form 

(2)

where m � �(1/b) and K � σf
(�1/b) � σf

m

Considering the mean stress modified version of the stress
amplitude (using Goodman, Soderberg, Geber), eq. 2 can be rewrit-
ten as follows

. (3)

If k � 1 and RF � RE (yield stress) the Soderberg’s model is
used, if k � 1 and RF � RM (strength limit) the Goodman’s model
is used and if k � 2 a RF � RM the Geber’s model is used. Using
the linear Palmgren-Miner law we can calculate fatigue damage
for stress amplitude σAi as follows

. (4)

3. Damage calculation for thin shell finite 
element using CPA 

Let us consider well-known shell finite elements (Kirchhoff’s
or Mindlin’s formulation) [1, 9, 11]. The stiffness parameters
depend on material constants and element geometry, mainly on its
thickness. At first we have to prepare the stress calculation process.
This process is based on the expression of the j-th element mem-
brane forces and bending moments (without shear forces) [10, 11],
i.e.

(5)

and

. (6)

The auxiliary matrices Im and Ib can be calculated only using
the numerical approach. Further details about Em, Eb, D, Bm,
Bb, uel and t are presented in [10]. The extreme stress values can
be expected at the top or at the bottom surface. Generally, it
means
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Let’s build new material and auxiliary matrices 

,  , (9)

where the matrix I3 is the classical unit matrix. Then (7) can be
rewritten as follows

,(10a)

.(10b)

Findley hypothesis 
Findley has assumed the critical plane as a plane with maximum

shear stress, i.e. the fatigue equivalent shear stress can be written
as follows [11] 

, (11)

where k is Findley’s factor whose value for tough metal can be
about 0.3. Using von Mises relationship between normal and shear
stresses and classical plane stress analysis for top or bottom element
surface it is possible to rewrite (9) into the following form

(12a)

(12b)

where

and (13)

The damage calculation can be realised using eq. (4). The pre-
sented relationships were applicable for FE analyses. Numerical
and experimental tests confirmed that the factor k � 0.3 was over-
stated [4, 11] by the author.
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Dang Van hypothesis
Dang Van again assumed the critical plane with shear stress

but with difference in factor k, which can be calculated from normal
and shear fatigue limit, i.e. 

(14)

where τC is shear (torsional) fatigue limit, σC is normal (axial)
fatigue limit, σ1, σ2, σ3 are principal stresses. Relationship (11) is
possible to use like that

(15)

Using von Mises hypothesis we can get [4] 

. (16)

Using the application of the shell stress theory and eqs. 10a,
b we can obtain 

(17a)

(17b)

Relations (12) and (17) present equivalent stresses applicable
for rainflow decomposition for both proportional and non-propor-
tional loading. The cumulative damage calculation can be realised
using eq. (4) again.

HMH modified hypothesis 
Applying von Mises equivalent stress for CPA we can obtain

the following relationship

, (18)

or in detail

(19a)
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where

and   . (20)

In this case it should be noted that computational approach
depends on a searching process of a critical plane normal vector
nCPA. If the rainflow analysis is used it is very important to know
the sign of the calculated equivalent stress therefore the sign of
this stress is defined by sign of normal component. For searching
process was used optimizing tools in Matlab [12] and optimizing
problem for cumulative damage function is usually formulated as
follows

(21)

for unknown vector nCPA and stresses on bottom surface. The same
computational process can be realised on top element surface.

4. Damage calculation for thin shell finite 
element using IA

The fundamental idea is to count rainflow cycles on all linear
combinations of the stress random vector components [7], i.e.

(22)

on the assumption that the parameters ci belong to a hypersphere

. Practically if the stress state is biaxial (e.g. thin shell 

finite element) the stress components can be written under the
form of three dimension vector σ � [σx,σy,τxy]

T and the equivalent
stress will be calculated as follows  

(23)

on condition that c2
1 � c2

2 � c2
3 � 1 . In the case of shell element

we can obtain again the following relationships 

and

. (24)

Hence the next goal will be to find extreme value of the esti-
mated damage for vector c and i-th element, i.e. 
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(25)

where Di-max/MRF is the maximum value of the cumulative damage
for i-th element, 2Ni is the number of cycles to failure, mc is the
number of cycles after rain-flow decomposition of the stress. Nat-
urally we have to observe the normality condition for c using the
following transformation    

. (26)

The searching process is realized by computational program
FAT_MRFA developed in Matlab. Program calculates elements
damage from stress response using original optimizing multiaxial
rainflow procedure suggested by authors [4, 6, 12].

5. Formulation of the optimizing problem

Nowadays the optimizing problem of the structural mass min-
imizing subjected to the prescribed fatigue damage is topical [3].
The optimization problem with optimizing variables x (element
thicknesses) can be mathematically stated as follows

, (27)

subjected to

,   k � 1 … m (28)

where n is number of the elements, m is number of the element
groups, DP is the prescribed cumulative damage, Dk

max is the cal-
culated extreme value of the cumulative damage for k-th element
group. Another formulation can be based on the idea to built-in
damage conditions into objective function, i.e. 

. (29)

It is necessary to note that the identification of the extreme
element (or node) cumulative damage is generally very time-con-
suming hence the stress sensitivity or signification analysis plays
important role. By reason that the shell structures are in our atten-
tion, the signification analysis of the thin shell finite elements will
be presented. Theory of this process is in detail published in [11,
12]. 

6. Optimization of the track maintenance 
machine frame 

Let’s realise the optimum design of the chosen parameters of
the track maintenance machine VKL 400 (Fig. 2) [11]. The com-
putational model creation, the analysis of the vertical and transver-
sal stochastic vibrations of the model and the process of structural

minF x
D

D x
1

P

k

k

m

1

"= -
=

^
^

h
h

> H/

D x D 0max
k

p #-^ h

minxF l Xi
i

n

i i
1

"$ $t=
=

^ h /

c
c c

c
T $

=
l l

l

cmax

max

D d

R

cc
1

_

_ _

maxi j
j

mc

i
bot j

f

M MRF
i

bot j

k

A MRF

f

m

1

1

$
v v

v

=

-

=

=

=

-

MRF ^

^ ^

f

h

h h

p

>

>

H

H

Z

[

\

]]

]
*

_

`

a

bb

b
4

/ designing for a vehicle speed of 40, 70 and 100 kmph will be pre-
sented. The cumulative damage determination and design of the
cross sections (thicknesses) of the machine frame will be the gist
of the solution.

Applied material characteristics
The material computational parameters are Young’s modulus

E � 2.1011 Pa, Poisson ratio μ � 0.3, density ρ � 7800 kg/m3,
point of S�N curve NA � 103 cycles, σAmax � 217 MPa, Fatigue
limit σC � 68.7 MPa, C�D constant k � 0.8, exponent of S�N
curve m � 5.2. Graphical presentation of the “working” Wöhler
curve reduced according to Corten-Dolan is in Fig. 3. 

Computational model
The computational FE model (Fig. 4) was built-up from a

virtual model created in PRO/Engineer (Fig. 5) [11]. The selected
values describing physical properties of the computing model were
parameterized in order to their arbitrary changes. The goal of para-
meterization was to achieve the maximum variability of the model
which related mainly to verification and debugging of this model
and consequently to the optimization process. Additional vehicle
parameters were considered as follows: the stiffness of vertical
primary spring k1 � 360000 N/m, the damping coefficient for ver-
tical primary spring b1 � 16000 N.s/m, the stiffness of vertical
secondary spring k2 � 600000 N/m, damping coefficient for ver-
tical secondary spring b2 � 900 N.s/m.

Fig. 2 The basic geometry of the maintenance machine VKL 400

Fig. 3 The “working” S –N curve
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Optimizing parameters 
The objective function and constrain conditions were defined

by equations (1) and (2). Cross-section parameters, i.e. the thick-
ness of the welded frame plates were been parameterized (Fig. 6).
Values used on the build of the frame were applied in the initial
analysis, of course. The list of these values is presented in Table 1. 

It should be noted that in each optimizing step the stress
response and cumulative damage were calculated for each element
group, i.e. for 11 groups. Identification of the damage critical finite

elements was realised using classical static analysis [8, 11]. The
results of this process are presented in Table 2.

The optimization problem was defined as follows
� weight minimization of the frame structures,
� regarding boundary condition – maximum value of the fatigue

damage Dp � 0.6,
� 11 optimization parameters – thicknesses (X1 - X11) .

Optimization variables can gain the discrete values listed in
Table 3. 

Model of stochastic excitation
The stochastic character of excitation was modelled on the basis

of the vertical and transversal track unevenness obtained from the
measuring on real track [7, 11]. The behaviour of the chosen random
kinematic excitation function is shown in Fig. 8. The points where
these functions are input into the computational model are pre-
sented in Fig. 7. 

Where:
v – vehicle speed,
L – wheel base (8 m),
uyL

(1) – unevenness of the left rail in transverse direction for the 
front axle,

uzL
(1) – unevenness of the left rail in vertical direction for the 

front axle, 
uyP

(1) – unevenness of the right rail in transverse direction for 
the front axle,

uzP
(1) – unevenness of the right rail in vertical direction for the 

front axle,
uyL

(2) – unevenness of the left rail in transverse direction for the 

back axle, i.e.  ,

uzL
(2) – unevenness of the left rail in vertical direction for the 

back axle, i.e.  ,

uyP
(2) – unevenness of the right rail in transverse direction for 

the back axle, i.e.  ,u t u t v
L

y yP P
2 1= -^ c] ]

h mg g

u t u t v
L

L Lz z
2 1= -^ c] ]

h mg g

u t u t v
L

L Ly y
2 1= -^ c] ]

h mg g

Fig. 4 The finite element model in COSMOS/M

Fig. 5 Model of the analyzed vehicle frame with cross sections
identification

Fig. 6 Variables of the frame cross sections

Initial values of design variables Tab. 1. 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Value
[mm]

30 20 25 20 35 35 15 25 15 25 25

Numbers of critical elements Tab. 2. 

Varia-
ble

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Elem.
No.

74 802 1753 2433 3420 3639 4007 4655 4939 5117 7252
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uzP
(2) – unevenness of the right rail in vertical direction for the

back axle, i.e.  .

Following operating conditions were assumed
� movement 27.000 hours with the velocity of 40kmph,
� movement 18.000 hours with the velocity of 70kmph,
� movement   9.000 hours with the velocity of 100kmph.

Results of the optimizing process
The optimizing process was very time consuming and contained

a lot of computational procedures. The main goal – structural
weight reduction was reached. Process of the weight reduction is
shown in Fig. 9. The calculation of the cumulative damage for
non-proportional shell stresses using IA was one of the most com-
plicated parts of the whole analysis [12]. The convergence history
of the optimizing process for chosen optimizing variables and cor-
responding cumulative damages are presented in Fig. 10. It can be
seen that the proposed algorithm is effective in view of a number
of design variables (nvar � 11), i.e. the number of iteration steps

u t u t v
L

zP zP
2 1= -^ c] ]

h mg g

was very low. Table 3 contains optimum values of the sheet thick-
nesses. 

7. Conclusion

The goal of the paper was to present some multi-axial fatigue
damage computational approaches and implementation and appli-
cation of the chosen structural optimization technique in the case
of the thin shell vehicle frames. The used methods were in-built
into finite element analysis. The results of numerical studies verify
accuracy of the applied optimizing approach in structural designing

Fig. 7 Identification of the kinematic excitation functions

Fig. 9 Reduction of the structural weight

Fig. 10 Convergence history of the cumulative damage 
for optimizing groups X5 – X8

Fig. 8 The random function – uyL
(1)

Optimum values Tab. 3. 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Value
[mm]

10 10 12 14 12 12 12 18 12 12 10
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with fatigue damage conditions. It is also necessary to remember a
general problem of computational mechanics, i.e. time-consuming
calculation hence in the authors’ opinion the proposed algorithms
will be acceptable in technical community.
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