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1. Introduction

Generally, it is possible to say that each engineering problem
encounters uncertainties in various forms, e.g. geometrical parame-
ters, material constants, loads, etc. Many of those uncertainties
are based on physical imperfections; the general diversity and
complexity of natural phenomena and, of course, our ignorance or
inability to precisely describe characteristics of the investigated
problem.

Uncertain parameters appear mostly as random variables and
thus are described in the terms of stochastic approach. But without
the knowledge of the probability density and the nature of distribu-
tion we are forced to use another approach, which could describe
the parameters with the mentioned restrains and at the same time
contain sufficient information about the character of the uncer-
tainty.

Alternately to the use of probability methods we can use
imprecise probabilities and the possibility theory, which involves
the theory of interval numbers [2, 3, 4], fuzzy numbers and fuzzy
sets [5, 6, 9]. Without the information of the relevance of the data
on the interval, we cannot use the fuzzy approach, but we are still
able to use the interval approach to describe the uncertain parame-
ters which are considered as unknown but bounded with lower and
upper bounds.

Our short study proposes algorithms for modal and spectral
interval computations of FE models and their effectivity analysis
in view of the input uncertainty degree (2%, 5%, 10%, 15%, 20%).

2. Computational methods for interval analysis

If we want to use interval arithmetic approach, an uncertain
number is represented by an interval of real numbers [2, 4]. The
interval numbers derived from the experimental data or expert
knowledge can then take into account the uncertainties in the model
parameters, model inputs etc. Complete information about the
uncertainties in the model may be included by this technique and
one can demonstrate how these uncertainties are processed by the
calculation procedure in MATLAB.

During the solving of the particular tasks using the interval
arithmetic application on the solution of numerical mathematics
and mechanical problems, the problem known as the overestimate
effect is encountered. Its elimination is possible only in the case of
meeting the specific assumptions, mainly related to the time effi-
ciency of the computing procedures [1, 3]. Considering uncertain
parameters in interval form, some solution approaches already used
or proposed by the authors are analyzed [9, 11]. The goal is to
present algorithm description and comparison study of the follow-
ing numerical methods:
� Monte Carlo method (MC) - as a comparison tool,
� a simple combination of only inf-values or only sup-values

(COM1),
� a full combination of all inf-sup values (COM2),
� a method which uses an optimization process as a tool for finding

out a inf-sup solution (OPT).

Monte Carlo method (MC) is a time consuming but reliable
solution. Various combinations of the uncertain parameter deter-
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ministic values are generated and after the subsequent solution in
the deterministic sense we obtain a complete set of results processed
in an appropriate manner. Infimum and supremum calculation is
following

inf(F) � min of all results F(pi), 
where i � 1, …, m and m � 5000 
 100000

(1)
sup(F) � max of all results F(pi), 
where i � 1, …, m and m � 5000 
 100000.

Solution evaluation in marginal values of interval parameters
(COM1) has its physical meaning for many engineering problems.
We consider an approach where the extreme output values are
obtained by the application of the extreme parameter values on
input. That means that the inf-sup is obtained using the determin-
istic analysis for inf or sup of input uncertain parameters. Inf-sup
calculation is

inf(F) � min of [F( p
�
), F(p�)]  and  

(2)
sup(F) � max of [F( p

�
), F(p�)].

Solution evaluation for all marginal values of interval parame-
ters (COM2) which is also based on the set of the deterministic
analyses appears as the more suitable one. The marginal interval
parameter values are considered again but the inf and sup values are
also combined. The method provides satisfying results and can be
marked as reliable, even if there is still a doubt about the existence
of the extreme solution for the uncertain parameter inner values.
Solution for two interval numbers p1 � �a1 b1� and p2 � �a2 b2�
may be found by this computational way

inf(F) � min of F[(a1 a2), F(a1 b2), F(b1 a2), F(b1 b2)] 
(3)

sup(F) � max of F[(a1 a2), F(a1 b2), F(b1 a2), F(b1 b2)] 

The method of the inf and sup solution using the optimization
techniques (OPT) is proposed by the authors as an alternative to
the first and to the third method. It should eliminate a big amount
of analyses in the first method and also eliminates the problem with
the possibility of the inf and sup existence inside of the interval
parameters for the deterministic values. Computational process
for two interval numbers p1 and p2 may be found as follows

inf(F) � F(pOPT), i.e. find pOPT so that F(pOPT) → min,
(4)

sup(F) � F(pOPT), i.e. find pOPT so that F(pOPT) → max,

3. Interval analysis of a damped computational model

A numerical analysis of the damped computational model (Fig.
1) with uncertain parameters (damping parameter, stiffness para-
meter, etc.) in interval form will be presented. The interval modal-
spectral analysis in the range of the first three eigen shapes was

performed. The mechanical system represents half of a vehicle under
vertical excitation of the front and rear axle.

It is assumed that the model is linearized about the operating
state and that the coordinates z1V (t), z1H(t), z2(t), ϕ2(t) and z3(t)
are measured from the equilibrium state [3]. The coordinates z2V (t)
and z2H(t) can be described as functions of the geometry of the
model and the coordinates z2(t) and ϕ2(t).

Mathematical model
As mentioned in previous section, the state space model for the

mathematical description is used [7, 8]. The state vector x(t) and the
input vector u(t) for the two wheels of the system can be given as

(5)

For easier representation, the state matrix A of the given system
can be decomposed in four sub matrices, i.e.,

. (6)

The matrix 0 is a 5–by–5 zero matrix and I represents a 5–by–
5 identity matrix. The mass matrix Ms has five entries along the
main diagonal which are not zero

. (7)

The stiffness matrix Ks, a 5–by–5 matrix consisting of the cor-
responding stiffness coefficients

.
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Fig. 1 5-DOF spring-mass-dashpot system
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with

k3,4 � k3(l/2 � l2V � lSe) 

k4,3 � k3(l/2 � l2V � lSe) (9)

k4,4 � k3(l/2 � l2V � lSe)
2 � k2Hl2

2H � k2V l2
2V

Similar to the stiffness matrix KS , the damping coefficient
matrix CS , also a 5–by–5 matrix is given as

with

c3,4 � c3(l/2 � l2V � lSe) 

c4,3 � c3(l/2 � l2V � lSe) (11)

c4,4 � c3(l/2 � l2V � lSe)
2 � c2Hl2

2H � c2V l2
2V

Percentage variances for real and imaginary parts of 1st, 2nd

and 3rd eigenvalues are shown on Figs. 2–4. The MC, COM2 and
OPT methods were used for the interval modal-spectral analysis.

4. Solving of truss structure with interval parameters

Considering different uncertain parameters the numerical inter-
val stress-strain study of a three–dimensional truss structure (Fig.
5) was performed.

As the interval uncertain parameters were the cross-sections
of the trusses considered. Because of the computation memory and
time demands, fifty one bars were split into 7 cross-sectional groups
(Fig. 6) [10]. All other parameters were considered as certain.

Certain parameters: E � 2 � 1011 Pa, μ � 0.3, ρ � 7800 kg � m�3,
δ � 10�5.

Uncertain parameters: xf � [0.02, 0.05, 0.10, 0.20],

A1 � 3500 � 10�6 � (1 � xfi) m
2,

A2 � 3000 � 10�6 � (1 � xfi) m
2,

A3 � 2500 � 10�6 � (1 � xfi) m
2,

A4 � 2000 � 10�6 � (1 � xfi) m
2,

A5 � 1800 � 10�6 � (1 � xfi) m
2,

A6 � 1500 � 10�6 � (1 � xfi) m
2,

A7 � 1000 � 10�6 � (1 � xfi) m
2.

.
(8)
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Values for the parameters of the 5-DOF spring-mass-dashpot system Tab. 1. 

where xf � [0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20].

Uncertain parameters Certain

Mass parameters Stiffness constants Damping coefficients Distances

m1V � 45 � (1 � xfi) kg

m2 � 632.5 � (1 � xfi) kg

m1H � 37 � (1 � xfi) kg

m3 � 28 � (1 � xfi) kg

I2yy � 773.5 � (1 � xfi) kg.m2

k1V � 230 � 103 � (1 � xfi) N/m

k1H � 230 � 103 � (1 � xfi) N/m

k2V � 22.6 � 103 � (1 � xfi) N/m

k2H � 20 � 103 � (1 � xfi) N/m

k3 � 9.9 � 103 � (1 � xfi) N/m

c1V � 46 � (1 � xfi) Ns/m

c1H � 5 � (1 � xfi) Ns/m

c2V � 1900 � (1 � xfi) Ns/m

c2H � 1900 � (1 � xfi) Ns/m

c3 � 260 � (1 � xfi) Ns/m

l2V � 1.8 m

l2H � 2.2 m

lSe � 2 m

l � 4 m
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Fig. 2 Percentage variance of the 1st eigenvalue

Fig. 3 Percentage variance of the 2nd eigenvalue

Fig. 4 Percentage variance of the 3rd eigenvalue
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Fig. 5 Analyzed truss structure, dimensions in [m]

Fig. 6 Truss structure split into 7 cross-sectional groups

Fig. 7 Stress solution on beam No. 5 Fig. 8 Percentage variance on beam No. 5

Fig. 9 Stress solution on beam No. 36 Fig. 10 Percentage variance on beam No. 36
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5. Conclusion

The paper presents the interval arithmetic application on
structural FE analysis and on a modal and spectral analysis. The
interval arithmetic provides a new possibility of the examination
of quality and reliability of analyzed objects. In the paper authors
investigated possibilities of the stress-strain solution of models with
interval cross-sectional areas of the truss structure.

It shows the solution efficiency for solving problems including
uncertain parameters with a various width of the interval. The inter-
val arithmetic was chosen as a tool for describing various uncertain
characteristics of a damped mechanical model. The solution effi-
ciency for solving problems including uncertain parameters with
a various width of the interval is shown.

The presented analyses results can be summarized as follows:

� MC is a sure method for obtaining adequate solution results,
with the regard of the amount of analyses needed,

� COM1 method gives satisfactory results and can be described
as reliable for this kind of analyses, although doubt arises in the
sense of the existence of extreme solution for inner values of
uncertain parameters,

� COM2 method provides decent results, but it is limited due to
the exponential growth of the analyses number for complicated
problems, once again arises doubt in the sense of existence of
extreme solution for inner values of uncertain parameters,

� OPT method provides good results and is suitable for complicated
problems because it does not need so many analyses as in the
cases of the MC or COM2 methods.
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Stress inf/sup results for the chosen bars [MPa] Tab. 2.

Uncertainty Bar No. MC OPT COM1 COM2

2%
5 � 25.010 26.030 � � 25.010 26.030 � � 25.010 26.030 � � 25.010 26.030 �

36 � �0.104 �0.097 � � �0.102 �0.096 � � �0.103 �0.099 � � �0.106 �0.096 �

5%
5 � 24.754 26.853 � � 24.946 26.853 � � 24.295 26.853 � � 24.295 26.853 �

36 � �0.110 �0.095 � � �0.106 �0.090 � � �0.107 �0.097 � � �0.115 �0.090 �

10%
5 � 23.264 28.345 � � 23.191 28.345 � � 23.191 28.345 � � 23.191 28.345 �

36 � �0.118 �0.085 � � �0.130 �0.079 � � �0.113 �0.092 � � �0.130 �0.079 �

20%
5 � 21.258 31.888 � � 21.258 31.888 � � 21.258 31.888 � � 21.258 31.888 �

36 � �0.158 �0.071 � � �0.150 �0.086 � � �0.127 �0.085 � � �0.167 �0.062 �
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