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1. Introduction

Modern processing systems of the graphic and multimedia
information (supervision of various objects, remote monitoring,
control and aiming, etc.) should solve a problem of the operative
analysis of complex dynamic images and transmission of informa-
tion flows of a various type. In all these information structures the
procedures of signal compression, signal restoration, parameters’
measurement, recognition, etc are present. In a number of papers
[1–3] it is shown that for the decision of many problems mentioned
above the application of transformation of the initial image on bases
of orthogonal polynomials or the functions connected with them
is effective. In the present work the possibility of distinction of the
images transformed thereby with use of the theory of statistical
decisions is considered.

2. Problem statement

Let’s assume that the realization of the two-dimensional random
field ξ(r), r � (x, y), which can be or an additive mix of the useful
signal s1(r) and hindrance η(r): ξ(r) � s1(r) 	 η(r) (hypothesis
H1) or an additive mix of the useful signal s2(r) and hindrance
η(r): ξ(r) � s1(r) 	 η(r) (hypothesis H2), incomes to the receiver
input. Herewith the hypothesis H1 is realized with probability p1,
and the hypothesis H2 is realized with probability p2.

Let’s consider that initial useful signals s1(r), s2(r) can be
expand into series of kind
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in one or another system of orthogonal functions {ϕmn(r)}. Here

,
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are expansion factors, and Ω is area of orthogonality of basis
{ϕmn(r)}.

It should be noted that useful signals in the process of trans-
formation, compression and the subsequent restoration can be
exposed to various restrictions. Firstly, the transmitting device can
transmit signals with the limited number of modes M (M � ∞) to
the communication channel:

,

(3)

Secondly, depending on capacity of computing systems as
a part of the receiver-analyzer, computational burden (computer
timetable) etc not all modes of signals (1) but only the most power-
ful ones can be processed. In both cases so-called incomplete pro-
cessing of a useful signal takes place.

Models of hindrances at optical and optoelectronic processing
of the information are in detail considered in [4, 5]. Generally the
additive hindrance hits in information system both at a stage of
transformation of analogue signals s1(r), s2(r) in the discrete form
and from the communication channel to the receiver-analyzer input.
If a quantum character of weak optical signals is not taken into
consideration and signals is assumed as intensive enough then it
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is possible often to believe, that a hindrance is Gaussian random
field with known mathematical expectation Mη � �η(r)� and cor-
relation matrix Kη(r1, r2) � �η◦(r1) η◦(r2)�. Here η◦(r) � η(r) � Mη
is a centered random field. As the mathematical expectation Mη
is a priori known than it can be subtracted from a hindrance η(r)
in the processing operations and it can not be taken into conside-
ration at the analysis. Thereupon a symbol «◦» over η(r) for sim-
plification of record will be skipped further.

Spectral-correlation properties of a field η(r) can be various
depending on physical statement of a problem [4, 5]. If processing
algorithms don’t consider thin difference of spatial spectrums of
a useful signal and a hindrance but focus the attention on the analy-
sis of generalized spectrum’s modes of the field si(r), i � 1, 2 than
hindrance η(r) may be approximated by Gaussian white noise with
a correlation matrix of a kind Kη(r1, r2) � (N0/2)δ(r2 � r1). The
model of white noise is quite proved if hindrance sources are wide-
band processes in electronic devices [6].

3. Optimal and Quasioptimal Algorithms of Images’
Distinction in Bases of Orthogonal Polynomials

According to [7] the algorithm of distinction of signals si(r),
� 1, 2 on the background of noise η(r) can be presented in the
general form as follows:

, (4)

where L is a logarithm of functional of likelihood ratio (FLR) for
the hypothesis H1 against alternative H2 , and h0 is the threshold
calculated according to chosen optimality criterion. If logarithm of
FLR exceeds the threshold h0 then the decision on signal presence
s1(r) in realization of the observable data ξ(r) is delivered and oth-
erwise – on signal presence s2(r).

Believing a hindrance η(r) by Gaussian white noise for loga-
rithm of FLR we have [7]

. (5)

Here , i � 1, 2 is a total energy of signal

si(r). Then the decision rule (4) will be presented in the form

. (6)

At incomplete reception when the mix ξ(r) � siM(r) 	 η(r)
with unknown number of modes M at a useful signal (3) is observed
for the hypothesis Hi we receive from Eq. (6)

. (7)

According to [7] the detection algorithm (7) will not be optimal
now. We name Eq. (7) as quasioptimal decision rule. Really, Eq.
(7) turned into optimal decision rule (6) at M " ∞. Comparing
characteristics of algorithms (6) and (7) it is possible to estimate
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losses in efficiency of processing algorithm (7) and to define require-
ments to throughput of a communication channel.

If ν modes for representation of reference signals s1(r), s2(r)
on the receiving site is used then the decision rule (6) will be trans-
formed to form

(8)

where , i � 1, 2. Signals siν(r) in Eq. (8) con-

taining ν modes are defined similarly Eq. (3).

Generally the number ν can be both more and less M. It is
determined by restriction on computing possibilities of the receiver-
analyzer, the prior information on channel throughput and other
restrictions on structure of information transmission and process-
ing system.

In a number of practical applications there can be a notation
of Eqs. (4), (5) in a vector-matrix form more convenient. We will
designate

, 

C�
mn � Amn � Bmn , C	

mn � Amn 	 Bmn .

Then it is possible to write down Eqs. (4), (5) as

.

The similar notation can be offered for algorithms (7), (8).

4. Efficiency of Image Distinction Algorithms in Bases
of Orthogonal Polynomials

As the quantitative characteristic of image distinction algo-
rithms synthesized in item 3 the mean error probability will be
used [7]. We will find the error probability of signal distinction at
optimal reception according to algorithm (6) at first. Following
[7] the mean error probability of distinction Pe we will write down
in a form

Pe � p1P(2�1) 	 p2P(1�2), (9)

where pi is the prior probability of the hypothesis Hi and P(i � j) is
the probability of decision in favour of i-th signal while j-th hypoth-
esis was true (i, j � 1, 2). By definition [7]

, . (10)

Here wi(x), i � 1, 2 is the probability density of logarithm of
FLR (5) at hypothesis Hi .

According to [7] logarithm of FLR L (5) is a Gaussian random
value. Then for probabilities (10) is:
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,
(11)

,

Through m1L, m2L and σ1L, σ2L in Eq. (11) mathematical
expectations and mean square deviations of random value L (5) at
hypotheses H1 and H2 are designated. Implementing immediate
averaging of Eq. (5) on all possible realizations of the observable
data ξ(r) we can find following expressions for m1L, m2L, σ1L, σ2L:

,
(12)

.

Here   is the correlation factor reflecting similarity of the geo-
metrical form of two objects.

Let’s introduce designations m � (E1 	 E2 � 2R��E1
�E2)/N0,

D � 2(E1 	 E2 � 2R��E1
�E2)/N0. Then, substituting (12) in (11),

and (11) in (9), for the mean error probability of distinction we
can write down

(13)

The formula (13) becomes simpler if signals s1(r) and s2(r)
are equiprobable (prior probabilities of hypotheses H1 and H2 are
equal): p1 � p2 � 0,5 and the threshold according to criterion of
the ideal observer [7] is chosen (h0 � 0):

(14)

Here z2
1,2 � 2E1,2/N0 . If in addition to the discriminating

signals are symmetric, i.e. E1 � E2 � E (z1 � z2 � z) than

. (15)

Let’s come to a case of distinction of two signals (3) limited
on number of modes now. But formed reference signal assumes
processing of infinite number of modes of the observable field
ξ(r). If representation (3) is performed then logarithm of FLR (7)
will be Gaussian random value with parameters

(16)

σ2
1,L (12) at the hypothesis H1 and

(17)

σ2
2,L (12) at the hypothesis H2 .
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take into account that , and over-

write Eqs. (16), (17) as

(18)

Then according to Eq. (9) the mean error probability Pe of
distinction of two signals (3) will be defined as follows

. (19)

The formula (19) becomes simplest if h0 � 0, p1 � p2 � 0,5,
E1 � E2 � E, ε1M � ε2M � εM. In this case

Pe � 1 � Φ	z(εM � RM/��2(�1 ���R)
, (20)

where z2 � 2E/N0 . At M " ∞ we have: εM " 1, RM " R and
expression (20) proceed to (15). It may be noted that performance
degradation of distinction (20) in comparison with a case of optimal
reception (15) takes place if

��1 ���R � (εM � RM)/��1 ���R or
(21)

1 � R � (εM � RM) � 0.

From a Cauchy-Bunyakowsky-Schwartz inequality [8] follows
that

or RM � εM .

Consequently the inequality (21) may be broken for strongly
correlated images, when R" 1, and distinction with use of limited
number of modes becomes more preferable than with use of unlim-
ited number of modes.

Consider an illustration of the offered approach to distinction
of signals/images by giving an example. For simplification of math-
ematical calculations and visualization of received results we will
believe that discriminated signals are one-dimensional. For two-
dimensional signals the general conclusions will be similar.

For definiteness we will assume that

s1(x) � exp(�α2x2), (22)

s2(x) � s1(x � τ) and correlation factor R (12) is R � R(τ) �
� exp(�α2τ2/2). Here α is the parameter characterizing the dura-
tion of discriminated signals. As system of orthogonal functions
[10] we will choose Hermitian functions [9]:
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.

Here Hn(t) is a Hermitian polynomial of n-th order [9]. Then
for the generalized spectrums An, Bn (2) of signals s1(x), s2(x) it
can be found:

,

n � 2k; An � 0, n � 2k � 1;

In Fig. 1 we show the dependences of the mean error proba-
bility of distinction Pe of signals s1(x) and s2(x) calculated with
using Eq. (18), (19) for h0 � 0, p1 � p2 � 0,5, α � 1, τ � 2.
Curve 1 corresponds to a processing of first two modes of signals
(M � 1), curve 2 to a processing of first three modes (M � 2) and
curve 3 to a processing of first five modes (M � 4). Here the lim-
iting values of probability Pe (15) at optimal reception (M � ∞) by
circles are also marked. From Fig. 1 it is obvious that the account
of the several first modes of expansion of useful signals s1(x) and
s2(x) provides the characteristics of distinction close to limiting.

Let’s put now that the reference signal of the optimal receiver
contains also the limited number of modes, i.e. the structure of
distinction algorithm is defined by a rule (8) and M � ν. In this
case the logarithm of FLR (8) is a Gaussian random value with
mathematical expectation and variance

m1L � (E1ν 	 E2ν � 2Rν ��E1
�
νE�2ν)/N0,

(23)
σ2

1L � 2(E1ν 	 E2ν � 2Rν ��E1
�
νE�2ν)/N0
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at the hypothesis H2. Here Rν = #
Ω
s1ν(r)s2ν(r)dr/��E1

�
νE�2ν .

From Eqs. (23), (24) it is easy to see that

m1L � �m2L � mν ,  σ2
1L � σ2

2L � σ2
ν ,  σ2

ν � 2mν .

Then for the mean error probability of distinction Pe we can
write down similarly Eq. (19):

(25)

The formula (25) becomes simplest at p1 � p2 � 0,5 and 
h0 � 0:

(26)

If, besides, ε1ν � ε2ν � εν, z1 � z2 � z then

Pe � 1 � Φ	z ��εν
�(1�����Rν)/2
. (27)

In Eqs. (26), (27) it is designated εiν � Eiν/Ei , i � 1, 2, and
variable zi is defined the same as in Eq. (14). From comparison of
Eqs. (15) and (27) it is possible to conclude that incomplete recep-
tion (because of restrictions in mode structure of the receiver’s ref-
erence signal. i.e., as consequence, condition performance εν � 1)
bring loses of optimal reception generally.

In Fig. 2 the dependences Pe � Pe(z) calculated with use of
formula (26) for signal models s1(x) (22) and s2(x) � s1(x � τ)
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Fig. 1 Dependences of the mean error probability of distinction Pe of
signals s1(x) and s2(x)
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at α � 1, τ � 1 and various numbers of processed modes ν are
shown. Curve 1 is plotted at ν � 1 (the reference signal contains
two modes), curve 2 at ν � 2 (the reference signal contains three
modes) and curve 3 at ν � 4 (i.e., five modes of the reference signal
are taken into account).

In Fig. 3 the similar dependences of probability Pe (19) and
(26) are represented for following variants of incomplete reception. 

Curves 1 and 2 show the mean error probability of distinction
when the sensed signal has two or three modes. Curves 3 and 4 are
plotted for a case of restriction of the reference signal consisting of
two (curve 3) or three (curve 4) modes. Circles in Figs. 2, 3 map
limiting values of the probability Pe (15) at optimal reception.

From graphs shown in Fig. 3 it is obvious that restrictions on
number of modes in the reference signal are more advantageous

energetically than restrictions in the sensed signal. This is due to
the fact that if restrictions of the sensed signal occur then a loss of
a part of useful signal energy takes place while noise energy remains
invariable. And vise versa if restrictions of the reference signal
occur that not only useful signal energy but also noise energy
decreases on the receiver output.

5. Conclusion

At synthesis of distinction algorithms of signals and images
their representation in the form of a set of the generalized spec-
trum’s factors can appear rather effective. The given representation
allows to receive simpler and practically realized discriminators of
signals and images observed on the noise background. For strongly
correlated signals and images the use of final mode number of
sensed signals/images can provide smaller sacrifices of distinction
quality in comparison with a case of distinction of full signals/
images. An incomplete reception of a useful signal causes loses of
optimal reception in general because of restrictions in mode struc-
ture of a reference signal. However, the mode restrictions in a ref-
erence signal are more advantageous energetically (at the expense of
reduction not only energy of a useful signal but also noise energy
on a receiver output) than corresponding restrictions in the sensed
signal. In addition, by expanding of useful signal to cover several first
modes, this process can provide the distinction characteristics close
to limiting. 

The offered processing algorithms of signals and images can be
almost realized with use of modern element base on the basis of
digital signal processors or programmed logic integrated chips.
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